Def. An alternating series is of the form, where

$$
u_{n}>0
$$

either

$$
\begin{equation*}
u_{1}-u_{2}+u_{3}-u_{4}+u_{5}-u_{6} \pm \ldots \quad \stackrel{\text { i.e. }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} u_{n} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
-u_{1}+u_{2}-u_{3}+u_{4}-u_{5} \pm \ldots \quad \stackrel{\text { i.e. }}{=} \sum_{n=1}^{\infty}(-1)^{n} u_{n} \tag{2}
\end{equation*}
$$

BTW: Thomas's book defines an alternating series by (1) but should have said either (1) or (2).
Q.1. Question 1: Are these series alternating series? (Yes/No)

1. $\sum_{n=1}^{\infty} \frac{1}{n}$
2. $\sum_{n=17}^{\infty} \frac{(-1)^{n}}{n}$
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$
4. $\sum_{n=1}^{\infty} \frac{[\cos (\pi n)]^{n}}{n}$

Alternating Series Test (AST)

AST. Let
(1) $u_{n}>0 \quad$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
(3) $u_{n}>u_{n+1} \quad$ for each $n \in \mathbb{N}$.

Then the alternating series $\sum(-1)^{n} u_{n}$ converges.
Note that then the alternating series $\sum(-1)^{n+1} u_{n}$ also converges \quad (since $\left.\sum(-1)^{n+1} u_{n}=(-1)^{1} \sum(-1)^{n} u_{n}\right)$.

BTW: Conditions (1) - (3) are often summarized by $u_{n} \searrow 0$.
BTW: When testing if an alternating series $\sum(-1)^{n} u_{n}$ is abs. conv., think of $\sum\left|(-1)^{n} u_{n}\right| \stackrel{\text { as }}{=} \sum a_{n}$ with $\left|a_{n}\right|=u_{n}$.
Q.2. Question 2: What if trying the AST on $\sum(-1)^{n} u_{n}$ and get
(1) $u_{n}>0 \quad$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=17$.

So we cannot apply the AST \oplus ©
But all is not lost $\odot \odot$.
What test can we now call upon?

Example 1.

Below the choice-boxes (AC/CC/Divg), carefully justify the given series's behavior. Be sure to specify which test(s) you are using and clearly explain your logic. Then check the correct choice-box.
\square absolutely convergent
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ \square conditionally convergent
\square divergent
1.1. Is $\sum \frac{(-1)^{n}}{n}$ an alternating series?
1.2. Does $\sum\left|\frac{(-1)^{n}}{n}\right|$ converge?
1.3. Does $\sum \frac{(-1)^{n}}{n}$ converge?

1.4. Conculsion.

Example 2.

Below the choice-boxes (AC/CC/Divg), carefully justify the given series's behavior. Be sure to specify which test(s) you are using and clearly explain your logic. Then check the correct choice-box.

2.1. Thinking Land

2.2. Does $\sum\left|(-1)^{n} \frac{n^{3}}{n^{4}+1}\right|$ converge?
2.3. Does $\sum(-1)^{n} \frac{n^{3}}{n^{4}+1}$ converge?
2.4. Conculsion.

How to think about (i.e. how to remember) AST and Remainder

Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ satisfy the conditions of the Alternating Series Test, i.e.,
(1) $u_{n}>0$ and
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
and
(3) $u_{n}>u_{n+1}$.
(BTW: Conditions (1) - (3) are often summarized by $u_{n} \searrow 0$)
Consider the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of partial sums of the series

So

$$
s_{n}=\sum_{k=1}^{n}(1)^{k+1} u_{k}
$$

$$
\begin{aligned}
& s_{1}=u_{1} \\
& s_{2}=u_{1}-u_{2} \\
& s_{3}=u_{1}-u_{2}+u_{3} \\
& s_{4}=u_{1}-u_{2}+u_{3}-u_{4}
\end{aligned}
$$

Then we have the following scenario. (Thomas book page 612.)

FIGURE 10.13 The partial sums of an alternating series that satisfies the hypotheses of Theorem 15 for $N=1$ straddle the limit from the beginning.

Note that for $s_{n}=\sum_{k=1}^{n}(1)^{k+1} u_{k}$,

$$
s_{2} \leq s_{4} \leq s_{6} \leq \ldots \leq \ldots \leq s_{5} \leq s_{3} \leq s_{1}
$$

and there $L \in \mathbb{R}$ so that

$$
\lim _{n \rightarrow \infty} s_{n}=L, \quad \text { which just means that } \quad \sum_{n=1}^{\infty}(1)^{k+1} u_{k}=L
$$

Key idea behind Reminder: What is the biggest the distance between s_{2} and L be?
Well, $\ldots \operatorname{dist}\left(s_{2}, L\right)<\operatorname{dist}\left(s_{2}, s_{3}\right)=u_{3}$.

AST and Remainder

Let $\left\{u_{n}\right\}_{n=1}^{\infty}$ satisfy the $\mathbf{3}$ conditions of the Alternating Series Test, i.e., $u_{n} \searrow 0$).
Then alternating series $\sum_{k=1}^{\infty}(-1)^{k} u_{k}$ coverges and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ by the finite sum $\sum_{k=1}^{N}(-1)^{k} u_{k}$ and the error (i.e. remainder) satisfies (e.g., think about

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} u_{k}-\sum_{k=1}^{N}(-1)^{k} u_{k}\right|<u_{N+1}
$$

We will learn later in this Chapter that

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text {,for any } x \in \mathbb{R}
$$

so taking $x=-1$ gives us that

$$
e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{4!} \pm \ldots
$$

So (note where we start the sum ... cancellation going on here ...)

$$
\begin{equation*}
e^{-1}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!} \tag{1.1}
\end{equation*}
$$

which we will use in the next two examples.

Example 3.

Estimte the error made by using the first 4 terms of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}$ to approximate e^{-1}.

Recall in (1.1) we say that

$$
\begin{equation*}
e^{-1}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!} \tag{1.1}
\end{equation*}
$$

Example 4.

How large should we take N as to be guaranteed that

$$
\begin{equation*}
\left|e^{-1}-\sum_{n=2}^{N} \frac{(-1)^{n}}{n!}\right| \leq 0.01 ? \tag{4.1}
\end{equation*}
$$

Note using (1.1) and the fact $0.01=\frac{0.01}{1.00}=\frac{001}{100}=\frac{1}{100}$, the inequality (4.1) can be written as

$$
\left|\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n!}-\sum_{n=2}^{N} \frac{(-1)^{n}}{n!}\right| \leq \frac{1}{100} ?
$$

Justify your answer with an appropriate infinite series remainder test.
Let's recall . . . so far we have remainder theorems for the Integral Test and AST.

