Absolute Convergence vs. Conditional Convergence vs. Divergence / Ratio&Root Test

In this handout: > a, is an arbitrary-termed series (i.e. —o0 < a, < 00).

Z a, is absolutely convergent = _ Z la,| converges }
Z a,, 1is conditionally convergent — - Z la,| diverges  and Z a, converges
Z a, is divergent = _ Z a, diverges }
Summarizing: _
By definition, ) a, is > |an| doay
absolutely convergent if and only if
conditionally convergent if and only if and
divergent if and only if

’Big Important Theorem‘

If an converges , then a, converges .
g g

So we get for free:
If Z a, diverges, then Z la,|  diverges .

Combining the Definition and Big Important Theorem we get

If Y a, is > |an| > an
absolutely convergent then so get
conditionally convergent then and
divergent then so get

So each arbitrary-termed series  a, is one, and only one, of the three possibilities:
[] absolutely convergent
[] conditionally convergent
[] divergent

Ratio Test & Root Test (for an arbitrary-termed series ) a,).

a
For the Ratio Test, set pi= lim |2
n—00 an,
For the Root Test, set p:=lim ¥/ |a,| "=° lim |an|% .
n—oo n—oo
Then
0 <p<1 — Z a, converges absolutely
p =1 == test is inconclusive (the test doesn’t tell us anything)
1 <p < - Z a, diverges (by the n'"-term test for divergence) .
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Alternating Series
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! +u, integer n. If f'(x) = 0 for all x greater than or equal to some positive integer N, then f(x)
| i is nonincreasing for x = N. It follows that f(n) = f(n + 1), or u, = u,.,. forn = N.
i +iuy 3 .
{ _— EXAMPLE 2 Consider the sequence where w, = 10n/(n* + 16). Define f(x) =
: 10x/(x* + 16). Then from the Derivative Quotient Rule,
I
! 7z . , 10(16 — a?)
0 5 s L G P f'x) = 1167 =0 whenever x = 4.
FIGURE 10.13  The partial sums of It follows that u, = u,, for n = 4. That is, the sequence {u,} is nonincreasing for
an alternating series that satisfies the n =4, |
hypotheses of Theorem 15 for N = |
straddle the limit from the beginning. A graphical interpretation of the partial sums (Figure 10.13) shows how an alternating

series converges (o its limit L when the three conditions of Theorem 15 are satisfied with

N = 1. Starting from the origin of the x-axis, we lay off the positive distance s, = u,. To

find the point corresponding to s, = uy — u,, we back up a distance equal 10 u,. Since
U = u;, we do not back up any farther than the origin. We continue in this seesaw fash-
o0 ntl n+l ion, backing up or going forward as the signs in the series demand. But for n = N, each
\ Z (_.|) w_ - Z ( - ') W, ' forward or backward step is shorter than (or at most the same size as) the preceding step
Lo because u,+; = u,. And since the nth term approaches zero as n increases, the size of step
n=l - we take forward or backward gets smaller and smaller. We oscillate across the limit L, and
the amplitude of oscillation approaches zero. The limit L lies between any two successive

sums s, and s,+, and hence differs from s, by an amount less than u,,, .

Because

— , L - 33 ’ L = s,| <upyy  forn =N,

we can make useful estimates of the sums of convergent alternating series.

THEOREM 16—The Alternating Series Estimation Theorem If the alternat-
AWMy . 5 o0 . P = .
= W‘H’] 4 1\ ing series EFI(—I)"“u,, satisfies the three conditions of Theorem 13, then for
0l n=N,
ralw/
%'ouf Sn=ll|—llz+"‘+(—|)"”u,,
Nne "(_ approximates the sum L of the series with an error whose absolute value is less

than u,., the absolute value of the first unused term. Furthermore, the sum /.
lies between any two successive partial sums s, and s,.,, and the remainder,
L{ L — s,, has the same sign as the first unused term.

I N
=

We leave the verification of the sign of the remainder for Exercise 61.
EXAMPLE 3 We try Theorem 16 on a series whose sum we know:

1 | 1 | 1 1 | |
n e = = = g —— e
2_;,( PEsi-fti- gt R85 28 " 356
The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1 /256. The sum of the first eight terms is sg = 0.6640625 and
the sum of the first nine terms is s, = 0.66796875. The sum of the geometric series is

1 _2
1= (1/2) 32 &%

and we note that 0.6640625 < (2/3) < 0.66796875. The difference, (2/3) — 0.6640625 =
0.0026041666 . . . , is positive and is less than (1 /256) = 0.00390625. o
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