Math 142

Taylor/Maclaurin Polynomials and Series

Prof. Girardi

Fix an interval I in the real line (e.g., I might be (-17, 19)) and let x_0 be a point in I, i.e.,

 $x_0 \in I$.

 $f: I \to \mathbb{R}$

Next consider a function, whose domain is I,

and whose derivatives
$$f^{(n)}: I \to \mathbb{R}$$
 exist on the interval I for $n = 1, 2, 3, \dots, N$

Definition 1. The <u>Nth-order Taylor polynomial</u> for y = f(x) at x_0 is:

$$p_N(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N , \qquad (\text{open form})$$

which can also be written as (recall that 0! = 1)

 $p_N(x) = \frac{f^{(0)}(x_0)}{0!} + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N \quad \iff \text{a finite sum, i.e. the sum stops} \ .$

Formula (open form) is in open form. It can also be written in <u>closed form</u>, by using sigma notation, as

$$p_N(x) = \sum_{n=0}^N \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n .$$
 (closed form)

So $y = p_N(x)$ is a polynomial of degree at most N and it has the form

$$p_N(x) = \sum_{n=0}^N c_n (x - x_0)^n$$
 where the constants $c_n = \frac{f^{(n)}(x_0)}{n!}$

are specially chosen so that derivatives match up at x_0 , i.e. the constants c_n 's are chosen so that:

$$p_N(x_0) = f(x_0)$$

$$p_N^{(1)}(x_0) = f^{(1)}(x_0)$$

$$p_N^{(2)}(x_0) = f^{(2)}(x_0)$$

$$\vdots$$

$$p_N^{(N)}(x_0) = f^{(N)}(x_0) .$$

The constant c_n is the <u>n</u>th Taylor coefficient of y = f(x) about x_0 . The <u>N</u>th-order Maclaurin polynomial for y = f(x) is just the Nth-order Taylor polynomial for y = f(x) at $x_0 = 0$ and so it is

$$p_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n$$

Definition 2. ¹ The Taylor series for y = f(x) at x_0 is the power series:

$$P_{\infty}(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$
 (open form)

which can also be written as

 $P_{\infty}(x) = \frac{f^{(0)}(x_0)}{0!} + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots \quad \leftrightarrow \text{ the sum keeps on going and going.}$

The Taylor series can also be written in closed form, by using sigma notation, as

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n .$$
 (closed form)

The <u>Maclaurin series</u> for y = f(x) is just the Taylor series for y = f(x) at $x_0 = 0$.

¹Here we are assuming that the derivatives $y = f^{(n)}(x)$ exist for each x in the interval I and for each $n \in \mathbb{N} \equiv \{1, 2, 3, 4, 5, \dots\}$.

Easier Question 3. For what values of x does the power (a.k.a. Taylor) series

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
(1)

converge? The Root or Ratio test usually answers this question for us.

Big Question 4. If the power/Taylor series in formula (1) does indeed converge at a point x, i.e., if

$$\lim_{N \to \infty} P_N(x) \qquad \text{exists} ,$$

does the series converge to what we would want it to converge to, i.e., does

$$\lim_{N \to \infty} P_N(x) \stackrel{?}{=} f(x) \tag{2}$$

in short, we are asking

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n ?$$

The question in (2) is going to take some thought.

Definition 5. The <u>Nth-order Remainder term</u> for y = f(x) at x_0 is:

$$R_N(x) \stackrel{\text{def}}{=} f(x) - P_N(x)$$

where $y = P_N(x)$ is the Nth-order Taylor polynomial for y = f(x) at x_0 . So

$$f(x) = P_N(x) + R_N(x) \tag{3}$$

that is

$$f(x) \approx P_N(x)$$
 within an error of $R_N(x)$.

The question is

$$f(x) \stackrel{??}{=} P_{\infty}(x)$$
 i.e., $f(x) \stackrel{??}{=} \lim_{N \to \infty} P_N(x)$,

where $y = P_{\infty}(x)$ is the Taylor series of y = f(x) at x_0 . Well, let's think about what needs to be for $f(x) \stackrel{??}{=} P_{\infty}(x)$, i.e., for f to equal to its Taylor series.

Notice 6. Taking the $\lim_{N\to\infty}$ of both sides in equation (3), we see that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \qquad \qquad \leftrightarrow \text{ the sum keeps on going and going }.$$

if and only if

$$\lim_{N \to \infty} R_N(x) = 0$$

Recall 7. $\lim_{N\to\infty} R_N(x) = 0$ if and only if $\lim_{N\to\infty} |R_N(x)| = 0$.

Answer to the Big Question 4. So we know see that the following are equivalent, (i.e. (4) holds \iff (5) holds \iff (6) holds).

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n .$$
(4)

 $\lim_{N \to \infty} R_N(x) = 0.$ (5)

$$\lim_{N \to \infty} |R_N(x)| = 0.$$
(6)

So, to show that a function is equal to its Taylor series, we basically want to show that (6) holds true. How to do this? Well, this is where Mr. Taylor comes to the rescue!²

 $^{^{2}}$ According to Mr. Taylor, his Remainder Theorem (see next page) was motivated by coffeehouse conversations about works of Newton on planetary motion and works of Halley (of *Halley's comet*) on roots of polynomials.

Taylor's Remainder Theorem. Fix a point $x \in I$ and fix $N \in \mathbb{N}$.³

There exists c between x and x_0 so that

$$R_N(x) \stackrel{\text{def}}{=} f(x) - P_N(x) \stackrel{\text{theorem}}{=} \frac{f^{(N+1)}(c)}{(N+1)!} (x - x_0)^{(N+1)} .$$
(7)

So either $x \leq c \leq x_0$ or $x_0 \leq c \leq x$. So we do not know exactly what c is but at least we know that c is between x and x_0 and so $c \in I$.

Remark: This is a Big Theorem by Taylor. See the book for the proof. The proof uses the Mean Value Theorem. Note that formula (7) implies that

$$|R_N(x)| = \frac{\left|f^{(N+1)}(c)\right|}{(N+1)!} |x - x_0|^{(N+1)} .$$
(8)

How we often use Taylor's Remainder Theorem. Fix an interval I and fix $N \in \mathbb{N}$.³

Assume we can find $M \in \mathbb{R}$ so that

the maximum of
$$\left| f^{(N+1)}(x) \right|$$
 on the interval $I \leq M$,

i.e.,

$$\max_{c \in I} \left| f^{(N+1)}(c) \right| \leq M$$

Then

$$|R_N(x)| \leq \frac{M}{(N+1)!} |x - x_0|^{N+1}$$
(9)

for each $x \in I$.

Remark: This follows from formula (8).

³Here we assume that the (N + 1)-derivative of y = f(x), i.e. $y = f^{(N+1)}(x)$, exists for each $x \in I$.