Fix an interval I in the real line (e.g., I might be $(-17,19)$) and let x_{0} be a point in I, i.e.,

$$
x_{0} \in I
$$

Next consider a function, whose domain is I,

$$
f: I \rightarrow \mathbb{R}
$$

and whose derivatives $f^{(n)}: I \rightarrow \mathbb{R}$ exist on the interval I for $n=1,2,3, \ldots, N$.
Definition 1. The $N^{\text {th }}$-order Taylor polynomial for $y=f(x)$ at x_{0} is:

$$
p_{N}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}, \quad \quad \text { (open form) }
$$

which can also be written as (recall that $0!=1$)
$p_{N}(x)=\frac{f^{(0)}\left(x_{0}\right)}{0!}+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N} \quad \hookleftarrow$ a finite sum, i.e. the sum stops.
Formula (open form) is in open form. It can also be written in closed form, by using sigma notation, as

$$
p_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

(closed form)
So $y=p_{N}(x)$ is a polynomial of degree at most N and it has the form

$$
p_{N}(x)=\sum_{n=0}^{N} c_{n}\left(x-x_{0}\right)^{n} \quad \text { where the constants } \quad c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

are specially chosen so that derivatives match up at x_{0}, i.e. the constants c_{n} 's are chosen so that:

$$
\begin{aligned}
p_{N}\left(x_{0}\right) & =f\left(x_{0}\right) \\
p_{N}^{(1)}\left(x_{0}\right) & =f^{(1)}\left(x_{0}\right) \\
p_{N}^{(2)}\left(x_{0}\right) & =f^{(2)}\left(x_{0}\right) \\
& \vdots \\
p_{N}^{(N)}\left(x_{0}\right) & =f^{(N)}\left(x_{0}\right)
\end{aligned}
$$

The constant c_{n} is the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about x_{0}. The $\underline{N}^{\text {th }}$-order Maclaurin polynomial for $y=f(x)$ is just the $N^{\text {th }}$-order Taylor polynomial for $y=f(x)$ at $x_{0}=0$ and so it is

$$
p_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^{n}
$$

Definition 2. ${ }^{1}$ The Taylor series for $y=f(x)$ at x_{0} is the power series:

$$
P_{\infty}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots \quad \quad \text { (open form) }
$$

which can also be written as $P_{\infty}(x)=\frac{f^{(0)}\left(x_{0}\right)}{0!}+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots \quad \hookleftarrow$ the sum keeps on going and going. The Taylor series can also be written in closed form, by using sigma notation, as

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

(closed form)
The Maclaurin series for $y=f(x)$ is just the Taylor series for $y=f(x)$ at $x_{0}=0$.

[^0]Easier Question 3. For what values of x does the power (a.k.a. Taylor) series

$$
\begin{equation*}
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

converge? The Root or Ratio test usually answers this question for us.
Big Question 4. If the power/Taylor series in formula (1) does indeed converge at a point x, i.e., if

$$
\lim _{N \rightarrow \infty} P_{N}(x) \quad \text { exists }
$$

does the series converge to what we would want it to converge to, i.e., does

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{N}(x) \stackrel{?}{=} f(x) \tag{2}
\end{equation*}
$$

in short, we are asking

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} ?
$$

The question in (2) is going to take some thought.

$$
R_{N}(x) \stackrel{\text { def }}{=} f(x)-P_{N}(x)
$$

where $y=P_{N}(x)$ is the $N^{\text {th }}$-order Taylor polynomial for $y=f(x)$ at x_{0}.
So

$$
\begin{equation*}
f(x)=P_{N}(x)+R_{N}(x) \tag{3}
\end{equation*}
$$

that is

$$
f(x) \approx P_{N}(x) \quad \text { within an error of } \quad R_{N}(x)
$$

The question is

$$
f(x) \stackrel{? ?}{=} P_{\infty}(x) \quad \text { i.e., } \quad f(x) \stackrel{? ?}{=} \lim _{N \rightarrow \infty} P_{N}(x)
$$

where $y=P_{\infty}(x)$ is the Taylor series of $y=f(x)$ at x_{0}.
Well, let's think about what needs to be for $f(x) \stackrel{? ?}{=} P_{\infty}(x)$, i.e., for f to equal to its Taylor series.
Notice 6. Taking the $\lim _{N \rightarrow \infty}$ of both sides in equation (3), we see that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \quad \hookleftarrow \text { the sum keeps on going and going }
$$

if and only if

$$
\lim _{N \rightarrow \infty} R_{N}(x)=0
$$

Recall 7. $\lim _{N \rightarrow \infty} R_{N}(x)=0$ if and only if $\lim _{N \rightarrow \infty}\left|R_{N}(x)\right|=0$.
Answer to the Big Question 4. So we know see that the following are equivalent, (i.e. (4) holds $\Longleftrightarrow(5)$ holds \Longleftrightarrow (6) holds).

$$
\begin{gather*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \tag{4}\\
\lim _{N \rightarrow \infty} R_{N}(x)=0 \tag{5}\\
\lim _{N \rightarrow \infty}\left|R_{N}(x)\right|=0 \tag{6}
\end{gather*}
$$

So, to show that a function is equal to its Taylor series, we basically want to show that (6) holds true. How to do this? Well, this is where Mr. Taylor comes to the rescue! ${ }^{2}$

[^1]
Taylor's Remainder Theorem

Taylor's Remainder Theorem. Fix a point $x \in I$ and fix $N \in \mathbb{N}$. ${ }^{3}$
There exists c between x and x_{0} so that

$$
\begin{equation*}
R_{N}(x) \stackrel{\text { def }}{=} f(x)-P_{N}(x) \stackrel{\text { theorem }}{=} \frac{f^{(N+1)}(c)}{(N+1)!}\left(x-x_{0}\right)^{(N+1)} \tag{7}
\end{equation*}
$$

So either $x \leq c \leq x_{0}$ or $x_{0} \leq c \leq x$. So we do not know exactly what c is but at least we know that c is between x and x_{0} and so $c \in I$.
Remark: This is a Big Theorem by Taylor. See the book for the proof. The proof uses the Mean Value Theorem.
Note that formula (7) implies that

$$
\begin{equation*}
\left|R_{N}(x)\right|=\frac{\left|f^{(N+1)}(c)\right|}{(N+1)!}\left|x-x_{0}\right|^{(N+1)} \tag{8}
\end{equation*}
$$

How we often use Taylor's Remainder Theorem. Fix an interval I and fix $N \in \mathbb{N}$. ${ }^{3}$
Assume we can find $M \in \mathbb{R}$ so that

$$
\text { the maximum of }\left|f^{(N+1)}(x)\right| \text { on the interval } I \leq M
$$

i.e.,

$$
\max _{c \in I}\left|f^{(N+1)}(c)\right| \leq M
$$

Then

$$
\begin{equation*}
\left|R_{N}(x)\right| \leq \frac{M}{(N+1)!}\left|x-x_{0}\right|^{N+1} \tag{9}
\end{equation*}
$$

for each $x \in I$.
Remark: This follows from formula (8).

[^2]
[^0]: ${ }^{1}$ Here we are assuming that the derivatives $y=f^{(n)}(x)$ exist for each x in the interval I and for each $n \in \mathbb{N} \equiv\{1,2,3,4,5, \ldots\}$.

[^1]: ${ }^{2}$ According to Mr. Taylor, his Remainder Theorem (see next page) was motivated by coffeehouse conversations about works of Newton on planetary motion and works of Halley (of Halley's comet) on roots of polynomials.

[^2]: ${ }^{3}$ Here we assume that the $(N+1)$-derivative of $y=f(x)$, i.e. $y=f^{(N+1)}(x)$, exists for each $x \in I$.

