Formula/Concepts You Need To Know

Review of some needed Trig. Identities for Integration

- Your answers should be an angle in **RADIANS**.

- $\arccos(\frac{1}{2}) = \frac{\pi}{3}$ $\arccos(-\frac{1}{2}) = \frac{2\pi}{3}$ $\arcsin(\frac{1}{2}) = \frac{\pi}{6}$ $\arcsin(-\frac{1}{2}) = \frac{2\pi}{3}$ $\arcsin(-\frac{1}{2}) = \frac{-\pi}{6}$
- •. Double-angle formulas. Your answer should involve trig functions of θ , and not of 2θ .

 - $\cos(2\theta) = \cos^2\theta \sin^2\theta$ $\sin(2\theta) = 2\sin\theta\cos\theta$.
- Half-angle formulas. Your answer should involve $\cos(2\theta)$.
 - $\cos^2(\theta) = \left| \frac{1 + \cos(2\theta)}{2} \right|$ $\sin^2(\theta) = \left| \frac{1 \cos(2\theta)}{2} \right|$
- •. Since $\cos^2 \theta + \sin^2 \theta = 1$, we know that the corresponding relationship between:

 - cotangent (i.e., cot) and cosecant (i.e., csc) is $\underline{\hspace{1cm}} 1 + \cot^2 \theta = \csc^2 \theta$

Remember Your Calculus I Integration Basics?

In this part, a is a constant and a > 0.

- •. If $u \neq 0$, then $\int \frac{du}{u} = \frac{\ln |u|}{\ln a} + C$ •. If $a \neq 1$, then $\int a^u du = \frac{\frac{a^u}{\ln a}}{\ln a}$
- $\bullet \cdot \int \cos u \, du = \underline{\qquad \qquad } + C$
- $\bullet. \int \sec^2 u \, du = \underline{\qquad} + C$
- •. $\int \sec u \tan u \, du = \underline{\qquad} + C$
- $\bullet. \int \sin u \, du = \underline{\qquad} + C$
- $\bullet. \int \csc^2 u \, du = \underline{\qquad} + C$
- •. $\int \csc u \cot u \, du = \underline{\qquad} \csc u$
- •. $\int \tan u \, du = \underline{\qquad \qquad \qquad } \ln |\sec u| \stackrel{or}{=} \ln |\cos u| \underline{\qquad \qquad } + C$
- •. $\int \cot u \, du =$ $-\ln|\csc u| \stackrel{or}{=} \ln|\sin u|$
- •. $\int \sec u \, du = \ln |\sec u + \tan u| \stackrel{or}{=} \ln |\sec u \tan u|$
- •. $\int \csc u \, du = \underline{\qquad} \ln|\csc u + \cot u| \stackrel{or}{=} \ln|\csc u \cot u| + C$
- $\bullet. \int \frac{1}{\sqrt{a^2 u^2}} du = \frac{1}{1 + C} + C$
- $\bullet. \int \frac{1}{a^2 + u^2} du = \underline{\frac{1}{a} \tan^{-1} \left(\frac{u}{a}\right)}$
- $\bullet. \int \frac{1}{u\sqrt{u^2 a^2}} du = \frac{\frac{1}{a} \sec^{-1} \left(\frac{|u|}{a}\right)}{+C}$

Integration from Calculus II

- Partial Fraction Decomposition. Let's integrate $y = \frac{f(x)}{g(x)}$, where f and g are polyonomials, by 1st finding its PDF.
 - If [degree of f] \geq [degree of g], then one must first do long division
 - If [degree of f] < [degree of g], then first factor y = g(x) into | linear | factors px + q and irreducible quadratic factors $ax^2 + bx + c$ (to be sure it's irreducible, you need $b^2 - 4ac < 0$). Next, collect up like terms and follow the following rules.

Rule 1: For each factor of the form $(px+q)^m$ where $m \ge 1$, the decomposition of $y = \frac{f(x)}{g(x)}$ contains a sum of \boxed{m} partial fractions of the form, where each A_i is a real number,

$$\frac{A_1}{(px+q)^1} + \frac{A_2}{(px+q)^2} + \dots + \frac{A_m}{(px+q)^m}$$

Rule 2: For each factor of the form $(ax^2 + bx + c)^n$ where $n \ge 1$, the decomposition of $y = \frac{f(x)}{g(x)}$ contains a sum of |n| partial fractions of the form, where the A_i 's and B_i 's are real number.

$$\frac{A_1x+B_1}{(ax^2+bx+c)^1} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + \dots + \frac{A_nx+B_n}{(ax^2+bx+c)^n}$$

- •. Integration by parts formula: $\int u \, dv =$
- •. Integration by parts formula: $\int u \, dv = \underbrace{uv \int v \, du}$ •. Trig. Substitution. (Recall that the *integrand* is the function you are integrating.) Here, a is a constant and a > 0.
 - if the integrand involves $a^2 u^2$, then one makes the substitution $u = \underline{a \sin \theta}$
 - if the integrand involves $a^2 + u^2$, then one makes the substitution $u = \underline{a \tan \theta}$
 - if the integrand involves $u^2 a^2$, then one makes the substitution u = $a \sec \theta$

Sequences

- •. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Complete the below sentences.
 - The limit of $\{a_n\}_{n=1}^{\infty}$ is the real number L provided for each $\epsilon > 0$ there exists a natural number N so that if the natural number n satisfies $\underline{n} > \underline{N}$ then $|L - a_n| < \underline{\epsilon}$.
 - If the limit of $\{a_n\}_{n=1}^{\infty}$ is $L \in \mathbb{R}$, then we denote this by $\lim_{n\to\infty} a_n = \overline{L}$.
 - $\{a_n\}_{n=1}^{\infty}$ converges provided there exists a real number L so that $\lim_{n\to\infty} a_n = L$. $\{a_n\}_{n=1}^{\infty}$ diverges provided $\{a_n\}_{n=1}^{\infty}$ does not converge

 - $\{a_n\}_{n=1}^{\infty}$ diverges provided $\lim_{n\to\infty} a_n$ does not exist (i.e., DNE)
- Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)
- $\bullet \lim_{n \to \infty} \frac{5n^{17} + 6n^2 + 1}{7n^{18} + 9n^3 + 5} = \underline{0} \qquad \bullet \lim_{n \to \infty} \frac{36n^{17} 6n^2 1}{4n^{17} + 9n^3 + 5} = \underline{\frac{36}{4} \text{ or } 9}$ $\bullet \lim_{n \to \infty} \frac{-5n^{18} + 6n^2 + 1}{7n^{17} + 9n^3 + 5} = \underline{\text{DNE or } -\infty}$ $\bullet \lim_{n \to \infty} \sqrt{\frac{36n^{17} 6n^2 1}{4n^{17} + 9n^3 + 5}} = \underline{\sqrt{\frac{36}{4}} \text{ or } 3}$

- Can you do similar problems?
- •. Let $-\infty < r < \infty$. (Needed for Geometric Series.) Warning, don't confuse sequences with series.)
 - If |r| < 1, then $\lim_{n \to \infty} r^n =$ 0
 - If r = 1, then $\lim_{n \to \infty} r^n =$
 - If r > 1, then $\lim_{n \to \infty} r^n =$ DNE (tends to ∞)
 - If r = -1, then $\lim_{n \to \infty} r^n =$ DNE (oscillates between 1 and -1)
 - If r < -1, then $\lim_{n \to \infty} r^n = [$ DNE $(r^{2n} \to \infty \text{ while } r^{2n+1} \to -\infty)$

Series

▶. In this section, all series \sum are understood to be \sum , unless otherwise indicated.

•. For a formal <u>series</u> $\sum_{n=1}^{\infty} a_n$, where each $a_n \in \mathbb{R}$, consider the corresponding <u>sequence</u> $\{s_N\}_{N=1}^{\infty}$ of partial sums, so $s_N = S \sum_{n=1}^{N} a_n$. Then the formal series $\sum a_n$

• converges if and only if the $\lim_{N\to\infty} s_N$ exists

• converges to $L \in \mathbb{R}$ if and only if the $\lim_{N\to\infty} s_N$ exists and equals L

• diverges if and only if the $\lim_{N\to\infty} s_N$ does not exist

Now assume, furthermore, that $a_n \geq 0$ for each n. Then the sequence $\{s_N\}_{N=1}^{\infty}$ of partial sums either

• is bounded above (by some finite number), in which case the series $\sum a_n$ converges or

• is not bounded above (by some finite number), in which case the series $\sum a_n$ diverges

•. The n^{th} -term test for an arbitrary series $\sum a_n$. If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$ diverges

•. Fix $r \in \mathbb{R}$. For $N \ge 17$, let $s_N = \sum_{\mathbf{n}=17}^N r^n$ (Note the sum starts at 17). Then, for N > 17,

• $s_N = \underline{\qquad \qquad r^{17} + r^{18} + \ldots + r^N \qquad}$ (your answer can have ...'s but not a \sum sign)

• $rs_N = \underline{\qquad \qquad \qquad r^{18} + \ldots + r^N + r^{N+1} }$ (your answer can have ...'s but not a \sum sign)

• $(1-r)s_N = \underline{\qquad \qquad \qquad r^{17} - r^{N+1} }$ (your answer should have neither ...'s nor a \sum sign)

• and if $r \ne 1$, then $s_N = \underline{\qquad \qquad r^{17} - r^{N+1} }$ (your answer should have neither ...'s nor a \sum sign)

•. Geometric Series where $-\infty < r < \infty$. The series $\sum r^n$ (hint: look at the previous questions):

• converges if and only if |r|

• diverges if and only if |r|

•. Integral Test for a positive-termed series $\sum a_n$ where $a_n \geq 0$. Let $f: [1, \infty) \to \mathbb{R}$ be so that $a_n = f(\boxed{n})$ for each $n \in \mathbb{N}$ and y = f(x) is a continuous , positive , continuous , positive , continuous , positive , continuous , conti function. Then we have the following.

(1) For each N > 2,

$$\sum_{n=2}^{N} a_n \leq \int_{x=1}^{x=N} f(x) dx \leq \sum_{n=1}^{N-1} a_n.$$
 (1)

Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N, N-1, or N+1. Hint. Approximate (below and above) the $\int_1^N f(x) dx$ by the area of N-1 Riemann rectangles, each of base length $\Delta x=1$.

(2) From the bounds in (1), we see that $\sum a_n$ converges if and only if $\int_{x=1}^{x=\infty} f(x) dx$

converges.

(3) Now let $\sum a_n$ converge. We want to approximate the infinite sum $\sum_{n=1}^{\infty} a_n$ by the finite sum $\sum_{n=1}^{N} a_n$ within an error (i.e., remainder) of R_N . To figure out how good this approximation is, define R_N as below and get a good (as one can) lower and upper approximation of R_N , again using Reimann sums. Fill in the 3 boxes with: a number, N, N-1, or N+1.

$$\boxed{0} \leq R_N \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n = \sum_{n=N+1}^{\infty} a_n \leq \int_{x=N}^{\infty} f(x) dx.$$

- •. p-series where $0 . The series <math>\sum \frac{1}{n^p}$
 - \bullet converges if and only if p
 - \bullet diverges if and only if p< 1

This can be shown by using the <u>integral</u> test and comparing $\sum \frac{1}{n^p}$ to (the easy to compute) $\int_{x=1}^{\infty} \frac{1}{x^p}$

- •. Comparison Test for a positive-termed series $\sum a_n$ where $a_n \ge 0$. (Fill in the blanks with a_n and/or b_n .)
 - b_n converge, then \sum diverge, then \sum • If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and \sum converge, then \sum converge.
 - If $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$ and \sum diverge.

Hint: sing the song to yourself.

- •. Limit Comparison Test for a positive-termed series $\sum a_n$ where $a_n \ge 0$. Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$. If $0 < L < \infty$, then $\sum a_n$ converges if and only if $\sum b_n$ converges.
- •. Ratio and Root Tests for arbitrary-termed series $\sum a_n$ with $-\infty < a_n < \infty$. Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{or} \quad \rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

- < 1 then $\sum a_n$ converges absolutely. > 1 then $\sum a_n$ diverges. • If ρ
- If ρ
- If ρ = 1then the test is inconclusive (in other words, the test fails).
- •. Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).

Consider an alternating series $\sum (-1)^n u_n$ where $u_n > 0$ for each $n \in \mathbb{N}$.

If

- u_n > u_{n+1} for each $n \in \mathbb{N}$ $\lim_{n \to \infty} u_n = 0$
- $\lim_{n\to\infty} u_n =$

then

- $\sum (-1)^n u_n$
- we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty} (-1)^n u_n$ by the finite sum $\sum_{n=1}^{N} (-1)^n u_n$ and the error (i.e. remainder) satisfies

$$\left| \sum_{n=1}^{\infty} (-1)^n u_n - \sum_{n=1}^{N} (-1)^n u_n \right| \le \left[u_{N+1} \right].$$

- •. By definition, for an arbitrary series $\sum a_n$, (fill in these 4 boxes with converges or diverges).
 - $\sum a_n$ is absolutely convergent if and only if $\sum |a_n|$
 - $\sum a_n$ is conditionally convergent if and only if $\sum a_n$ converges and $\sum |a_n|$ diverges

converges

- $\sum a_n$ is divergent if and only if $\sum a_n$ diverges
- •. Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following FLOW CHART from class used to determine the behavior of a series $\sum_{n=17}^{\infty} a_n$.

 $\begin{array}{c|c}
 \text{Does } \sum |a_n| \text{ converge?} \\
 \text{Since } |a_n| \geq 0, \text{ use a positive term test:} \\
 \text{integral test, CT, LCT, ratio/root test.}
\end{array}$ $\begin{array}{c|c}
 \text{if NO} \\
 \text{lim}_{n \to \infty} |a_n| = 0?
\end{array}$ $\begin{array}{c|c}
 \text{If YES} \downarrow \downarrow \\
\hline
 \text{Is } \sum a_n \text{ an alternating series?}$ $\text{if YES} \downarrow \downarrow$

if YES \Downarrow Does $\sum a_n$ satisfy the conditions of the Alternating Series Test?
if YES \Downarrow $\sum a_n$ is conditionally convergent

divergent

 $\sum a_n$ is conditionally

Power Series

Condsider a (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (2)$$

with radius of convergence $R \in [0, \infty]$. (Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)

- Fill in the next for boxes with one of the following 4 choices: [a.] is always absolutely convergent (AC) [b.] is always conditionally convergent (CC) [c.] is always divergent (DIV) [d.] can do anything, i.e., there are examples showing that it can be AC, CC, or DIV.
 - (1) For $x = x_0$, the power series h(x) in (2) __a __.
 - (2) For $x \in \mathbb{R}$ such that $|x x_0| < R$, the power series h(x) in (2) __a__ .
 - (3) For $x \in \mathbb{R}$ such that $|x x_0| > R$ the power series h(x) in (2) _____ .
 - (4) If R > 0, then for the endpoints $x = x_0 \pm R$, the power series h(x) in (2) ______ .
- •. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the power series in (2).
 - (1) The function y = h(x) is <u>always differentiable</u> on the interval $(x_0 R, x_0 + R)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}$$
 (3)

What can you say about the radius of convergence of the power series in (3)? It's the same R

(2) The function y = h(x) always has an antiderivative on the interval $(x_0 - R, x_0 + R)$ (make this interval as large as it can be, but still keeping the statement true). Furthermore, if α and β are in this interval, then

$$\int_{x=\alpha}^{x=\beta} h(x) dx = \sum_{n=0}^{\infty} \left[\frac{a_n}{n+1} (x-x_0)^{n+1} \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta}$$

Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 .

Let $y = P_N(x)$ be the Nth-order Taylor polynomial of y = f(x) about x_0 .

Let $y = R_N(x)$ be the N^{th} -order Taylor remainder of y = f(x) about x_0 .

Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 .

Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

a. The formula for c_n is

$$c_n = \frac{f^{(n)}(x_0)}{n!}$$

b. In open form (i.e., with ... and without a \sum -sign)

$$P_N(x) = \int f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \dots + \frac{f^{(N)}(x_0)}{N!}(x - x_0)^N$$

c. In closed form (i.e., with a Σ -sign and without ...)

$$P_N(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

d. In open form (i.e., with ... and without a \sum -sign)

$$P_{\infty}(x) = \int f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

e. In closed form (i.e., with a \sum -sign and without ...)

$$P_{\infty}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x-x_0)^{(N+1)}$$
 for some c between x and x_0 .

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 = \begin{bmatrix} 0 & 1 \end{bmatrix}$.

Commonly Used Taylor Series

▶. Here, expansion refers to the power series expansion that is the Maclaurin series.

•. An expansion for $y = e^x$ is $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, which is valid precisely when $x \in (-\infty, \infty)$.

•. An expansion for $y = \cos x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, which is valid precisely when $x \in (-\infty, \infty)$.

•. An expansion for $y = \sin x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$, which is valid precisely when $x \in (-\infty, \infty)$.

•. An expansion for $y = \frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$, which is valid precisely when $x \in \boxed{(-1,1)}$

•. An expansion for $y = \ln(1+x)$ is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$, which is valid precisely when $x \in [-1,1]$

•. An expansion for $y = \arctan x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$, which is valid precisely when $x \in [-1,1]$

Polar Coordinates

- ▶. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.
- •. A point with PC (r, θ) also has PC (r, θ) as well as (r, θ) as well as (r, θ) .
- •. A point $P \in \mathbb{R}^2$ with CC (x, y) and PC (r, θ) satisfies the following.

 $x = \boxed{r \cos \theta}$ & $y = \boxed{r \sin \theta}$ & $r^2 = \boxed{x^2 + y^2}$ & $\boxed{\tan \theta} = \begin{cases} \frac{y}{x} & \text{if } x \neq 0 \\ \text{DNE} & \text{if } x = 0 \end{cases}$

•. The period of $f(\theta) = \cos(k\theta)$ and s of $f(\theta) = \sin(k\theta)$ is $\left[\frac{2\pi}{k}\right]$ To sketch these graphs, we divide the period by $\left[4\right]$ and make the chart, in order to detect the $\left[\frac{2\pi}{k}\right]$ max/min/zero's of the function $r = f(\theta)$.

- •. Now consider a function $r = f(\theta)$ which determines a curve in the plane where
 - $(1) f: [\alpha, \beta] \rightarrow [0, \infty]$
 - (2) f is continuous on $[\alpha, \beta]$
 - (3) $\beta \alpha \le 2\pi$.

Then the area bounded by polar curves $r = f(\theta)$ and the rays $\theta = \alpha$ and $\theta = \beta$ is

$$A = \int_{\theta=\alpha}^{\theta=\beta} \frac{1}{2} [f(\theta)]^2 d\theta.$$

7

Area and Volume of Revolutions

Let's start with some region R in the (2 dimensional) xy-plane and revolve R around an axis of revolution to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the volume of S.

	• In parts a, fill in the boxes with: x or y .
	• In parts b, c, and d, fill in the boxes with a formula involving <i>some</i> of:
	2 , π , radius , base , radius _{big} , radius _{little} , average radius , height , and/or thickness .
▶.	Area via Riemann Sums. Let's find the area of R by forming typical rectangles.
a.	We first partition either the x —axis or the y —axis. (We can pick either.)
⊡.	Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.
b.	If we partition the z-axis, where z is either x or y, the $\Delta z = $ base of a typical rectangle.
c.	The area of a typical rectangle is (height) (base)
▶.	Disk/Washer Method . Let's find the volume of the solid of revolution S using the disk/washer method.
a.	If the axis of revolution is:
	• the x-axis, or parallel to the x-axis, then we partition the x -axis.
	• the y-axis, or parallel to the y-axis, then we partition the y -axis.
⊡.	Next, using the partition, we form typical disk/washer's. Then we find the volume of each typical disk/washer.
b.	If we partition the z-axis, where z is either x or y, the $\Delta z = $ height of a tyical disk/washer.
c.	If we use the disk method , then the volume of a typical disk is:
	π (radius) ² (height)
$\mathbf{d}.$	If we use the washer method, then the volume of a typical washer is: (either form is fine)
	$\pi \; (\mathrm{radius_{big}})^2 \; (\mathrm{height}) \; - \; \pi \; (\mathrm{radius_{little}})^2 \; (\mathrm{height}) \stackrel{\mathrm{or}}{=} \; \pi \; \left[(\mathrm{radius_{big}})^2 - (\mathrm{radius_{little}})^2 \right] \; (\mathrm{height})$
▶.	Shell Method . Let's find the volume of this solid of revolution S using the shell method.
a.	If the axis of revolution is:
	• the x-axis, or parallel to the x-axis, then we partition the y —axis.
	• the y-axis, or parallel to the y-axis, then we partition the x —axis.
⊡.	Next, using the partition, we form typical shells. Then we find the volume of each typical shell.
b.	If we partition the z-axis, where z is either x or y, the $\Delta z =$ thickness of a typical shell.
	Also acceptable is $\Delta z = \text{radius}_{\text{big}} - \text{radius}_{\text{little}}$.
c.	The volume of a typical shell is: (either form is fine)
	2π (average radius) (height) (thickness) $\stackrel{\text{or}}{=} 2\pi$ (radius) (height) (thickness)