’Formula/Concepts You Need To Know‘

’Review of some needed Trig. Identities for Integration‘

. Your answers should be an angle in RADIANS.

e arccos( % ) = 3 e arccos( -% ) = %’f
° arcsin(%) = % e arcsin( -% ) = %

e Can you do similar problems?

. Double-angle formulas. Your answer should involve trig functions of 8, and not of 26.
e cos(20) = cos’f — sin’@ e sin(20) = 2 sinfcosf

. Half-angle formulas. Your answer should involve cos(26).

® COSQ(H) = M ° sin2(9) = M

2 2

. Since cos? 0 + sin? # = 1, we know that the corresponding relationship beween:

e tangent (i.e., tan) and secant (i.e., sec) is 1 +tan? = sec?§
e cotangent (i.e., cot) and cosecant (i.e., csc) is 1+ cot? § = csc? 0
’Remember Your Calculus I Integration Basics? In this part, a is a constant and a > 0.

CIfu#0, then [ = In |u +C
.Ifa#1, then [a“du = 1?11; +C
. [cosudu = sin u +C
. [sec?udu = tan u +C
. [secutanudu = secu +C
. [sinudu = - Ccosu +C
. [esctudu = - cotu +C
. [escucotudu = -cscu +C
. [tanudu = In |secu| Z - In |cos u| +C
. [cotudu = -In|cscu| Z In|sin u] +C
. [secudu = In [sec v + tanu| Z -1In [sec v — tan u| +C
. [escudu = -In|cscu + cotu| Z In |cscu — cot u) +C
| \/ﬁdu = sin”t (%) +C
. faQ}riquu = 1 tant (%) +C
. fiu\/ﬁdu = é sect (%) +C




’Integration from Calculus II‘

. Partial Fraction Decomposition. Let’s integrate y = %, where f and g are polyonomials, by 15¢ finding its PDF.
o If [degree of f] > [degree of g|, then one must first do long division

o If [degree of f] < [degree of g|, then first factor y = g(x) into factors pr + ¢ and irreducible

factors az? + bz + ¢ (to be sure it’s irreducible, you need ) .

Next, collect up like terms and follow the following rules.

Rule 1: For each factor of the form (pz + ¢)" where m > 1, the decomposition of y = % contains a sum
of partial fractions of the form, where each A; is a real number,
Aq As Am
ot T Geta? T T Gatom
Rule 2: For each factor of the form (az? + bz + ¢)" where n > 1, the decomposition of y % contains

a sum of partial fractions of the form, where the A;’s and B;’s are real number,

(a?zl-fg;ﬁlc)l + (a:é2$b+a£—20)2 +o. %
. Integration by parts formula: [udv = uwv — [vdu
. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.
e if the integrand involves a®? — u?, then one makes the substitution v = a sinf
e if the integrand involves a? + u?, then one makes the substitution v = atan 6
e if the integrand involves u? — a?, then one makes the substitution v = asecf

. Let {a,}52; be a sequence of real numbers. Complete the below sentences.

e The limit of {ay}22, is the real number L provided for each ¢ > 0 there exists a natural
number N so that if the natural number n satisfies _n_ > N then |L—a,| < _e

o If the limit of {a,}’2, is L € R, then we denote this by lim, ,ca, = L

o {a,}>°, converges provided  there exists a real number L so that lim, . a, = L

o {a,}>, diverges provided {a,}°, does not converge
o {a,}> diverges provided lim,_, ay, does not exist (i.e., DNE)
. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)
e lim M 0 e lim 36n 17 6n2 —1 _ 36 or 9
n—oo Tni8 +9n3 + 5 - n—oo 4nl7 £ 9n3 L5 4
-5n'® +6n% + 1 , 36n!7 — 6n? — 1
.nh—>nolo ™" +9n3 +5 = DRNEor-co_ .nh—>nolo\/4n17—|—9n3-|-5 :ﬂ

e Can you do similar problems?
. Let —0o < r < 0o. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

o If |r| < 1, then lim r”:’ 0 ‘
n—oo

e If r =1, then limr":’ 1 ‘
n—oo

o If r > 1, then lim r" = ’ DNE (tends to oco) ‘ .
n—oo

o If r =-1, then lim r" ’ DNE (oscillates between 1 and —1) ‘ .
n—oo

If r < -1, then lim 7" =| DNE (r* — oo while 1! — —c0) |.
n—0o0




Series

o0
». In this section, all series ) are understood to be Z , unless otherwise indicated.
n=1
e. For a formal series > ° | a,, where each a, € R, consider the corresponding sequence {sy}%_; of partial
sums, so sy = S ij:l ap. Then the formal series ) ay,

e converges if and only if the impy_,oo Sy exists

e converges to L € R if and only if  the limy_,o Sy exists and equals L

e diverges if and only if the limy_,o sy does not exist

Now assume, furthermore, that a, > 0 for each n. Then the sequence {sy}3_; of partial sums either

e is bounded above (by some finite number), in which case the series Y a, converges
or
e is not bounded above (by some finite number), in which case the series Y a,,  diverges .

e. The ntP-term test for an arbitrary series 3 a,.

If limy, 00 @y, # 0 or limy, o a,, does not exist, then > a, ’ diverges ‘ .

e. Fix r € R. For N > 17, let sy = S0_ . 7™ (Note the sum starts at 17). Then, for N > 17,

oSy = i e o (your answer can have ...’s but not a ) | sign)
ersy = r8 + ..+ N 4+ N1 (your answer can have ...’s but not a 3 sign)

e (l—r)sy = rl7 — pN+L (your answer should have neither ...’s nor a ) sign)
e and if r # 1, then sy = % (your answer should have neither ...’s nor a ) sign)

o. Geometric Series where —oo < r < co. The series ) 7" (hint: look at the previous questions):

e converges if and only if |r| ’ <1 ‘

e diverges if and only if |r| ’ >1 ‘ .

e. Integral Test for a positive-termed series » | a,, where a,, > 0. Let f: [1,00) — R be so that a,, = f( )

decreasing
(nonincsreasing is also ok)

, positive ,

for each n € Nand y = f(z) is a ’ continuous

function. Then we have the following.

(1) For each N > 2,
Z ap, < / f(x)dx < Z apn, . (1)

Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N, N —1, or N + 1.

Hint. Approximate (below and above) the le f(x) dz by the area of N — 1 Riemann rectangles, each of base length Az =1 .

(2) From the bounds in (1), we see that > a,, converges if and only if [ f(2) da converges.




(3) Now let )" a, converge. We want to approximate the infinite sum > >, a, by the finite sum
27]:[:1 ap, within an error (i.e., remainder) of Ry. To figure out how good this approximation is,
define Ry as below and get a good (as one can) lower and upper approximation of Ry, again using
Reimann sums. Fill in the 3 boxes with: a number, N, N —1,or N + 1.

e}

00 N
[ 0] < Ry def Z:lan_z_:lan = Y a < / flz)da .

. p-series where 0 < p < co. The series > n—lp

e converges if and only if p ’ > 1 ‘ .
e diverges if and only if p ’ <1 ‘ .
This can be shown by using the integral test and comparing n%, to (the easy to compute) f;; x%, dx .

. Comparison Test for a positive-termed series Y a,, where a,, > 0. (Fill in the blanks with a,, and/or by.)

e If0<a, <b, foralln € Nand converge, then converge.
e If0<b, <a,foralln € Nand ) diverge, then >’ diverge.

Hint: sing the song to yourself.

. Limit Comparison Test for a positive-termed series »  a,, where a,, > 0. Let b, > 0 and lim,,_, Z—Z = L.

If II' <L< , then > a,, converges if and only if ’ > by, converges

. Ratio and Root Tests for arbitrary-termed series _ a,, with —oo < a,, < co. Let

p = lim n+1 or p= lim ]an|% .
n—0oo | ap n—o0
o If p <1 then > a, converges absolutely.
o If p >1 then > a, diverges.

o If p then the test is inconclusive (in other words, the test fails).

. Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).

Consider an alternating series » (—1)"u,, where wu, > 0 for each n € N.

If
° U, > Up+1 for each n € N

then
o > (—1)"uy, ’ converges ‘

e we can estimate (i.e., approximate) the infinite sum 3.°°  (—1)™u,, by the finite sum S>> (—=1)"u,,

and the error (i.e. remainder) satisfies

oo N
DD Uy = D> (~D)"up| < | unt
n=1 n=1

. By definition, for an arbitrary series ) ay, (fill in these 4 boxes with converges or diverges).

e > a, is absolutely convergent if and only if >_ |a,| ’ converges

e > a, is conditionally convergent if and only if > ay, and > |an| .




e > a, is divergent if and only if }_ a, .

e. Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following
FLOW CHART from class used to determine the behavior of a series > 7 |- ap.

Does > |an| converge? . ,
. . if NO | Does if NO . :
Since |a,| > 0, use a positive term test:| = lim lan| = 07 =1 Y ayis ’ divergent
integral test, CT, LCT, ratio/root test. nroo el E
if YES | if YES |
> ay is absolutely convergent Is }_ a, an alternating series?
if YES |
Does > ay, satisfy the conditions of the Alternating Series Test?
FYES |
> ay is ’ conditionally convergent ‘
’Power Series‘
Condsider a (formal) power series
o0
h(z) = Y an(z )", (2)
n=0
with radius of convergence R € [0,00]. (Here zg € R is fixed and {a, }3°, is a fixed sequence of real numbers.)
e. Fill in the next for boxes with one of the following 4 choices: [a.] is always absolutely convergent (AC)
[b.] is always conditionally convergent (CC) [c.] is always divergent (DIV) [d.] can do anything,

i.e., there are examples showing that it can be AC, CC, or DIV.
(1) For x = x0, the power series h(x) in (2) __a
(2) For x € R such that |x — xg| < R, the power series h(x) in (2) __a
(3) For x € R such that | — z9| > R the power series h(z) in (2)
(4) If R > 0, then for the endpoints x = z¢ £ R, the power series h(z)in (2) _ d
e. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the
power series in (2).

(1) The function y = h(z) is always differentiable on the interval ’ (xo — R,xz0 + R) ‘ (make this

interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

oo
B (z) = Z nay, (x — x0)" 1 . (3)
n=1
What can you say about the radius of convergence of the power series in (3)? ’ It’s the same R ‘

(2) The function y = h(z) always has an antiderivative on the interval ’ (xo — R,x0 + R) ‘ (make

this interval as large as it can be, but still keeping the statement true). Futhermore, if o and  are in

this interval, then

x=0
=0 oo a,
/ h(z)dx = Z ] (z — o)™
r=o n=0 X=a




’Taylor/ Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing .
Let y = Py(x) be the N*-order Taylor polynomial of y = f(x) about z.

Let y = Ry(x) be the N*'-order Taylor remainder of y = f(x) about .

Let y = Py (z) be the Taylor series of y = f(z) about x.

Let ¢, be the n'" Taylor coefficient of y = f(z) about .

. The formula for ¢, is

f(”)(xo)

n!

. In open form (i.e., with ...

and without a ) -sign)

Pr(@) = | flao)+ f/(ao) (e — x0) + 2 (2)2(!%) (x—a0)? + L (3)3(!“" V@ —aopp 4t d (N])V(!‘” ) (@ — ag)¥
. In closed form (i.e., with a 3 -sign and without ... )
Py(z) = i f(n;(,xo (= 20)"
n=0 ’
. In open form (i.e., with ... and without a > -sign)
Po(a) = ) + £/ an)o = ) + T o g L) (s
. In closed form (i.e., with a 3 -sign and without ... )
Py(z) = i f(n;(,xo) (x — x0)"
n=0 ’

. We know that f(x) = Py(z) + Ry(z). Taylor’s BIG Theorem tells us that, for each = € I,

f(N—i—l)( C)
Ry(z) = e (z — zo)(N+D for some ¢ between x and Zo
. A Maclaurin series is a Taylor series with the center specifically specified as xy = 0




Commonly Used Taylor Series

. Here, expansion refers to the power series expansion that is the Maclaurin series.

(o]
. An expansion for y = e is > Tr , which is valid precisely when z € | (—o0, 00)
n=0
o0
. An expansion for y = cosz is dS(=1)" % , which is valid precisely when x € )
n=0
o0
. An expansion for y = sinx is (=1 % , which is valid precisely when x € )
n=0
o0
. An expansion for y = ﬁ is > an , which is valid precisely when z € | (—1,1) |.
n=0
x n
. An expansion for y = In(1+x) is (=1t , which is valid precisely when z € | (—1,1]
n=1
. . x $2n+1 . . . .
. An expansion for y = arctan x is > (=D g , which is valid precisely when z €| [—1,1]
n=0

’ Polar Coordinates ‘

. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

. A point with PC (r, ) also has PC ( , 9+27r> as well as < , 9+7r) .

. A point P € R? with CC (x,y) and PC (r, ) satisfies the following.
4 if 0
_ _ : 2_[ 2., .2 _J=z if z #
r =|r cosf & Yy = | r sinf & T — & tan 6 = {DNE Fr—0

. The period of f(0) = cos(kf) and s of f(f) = sin(k0) is 2% To sketch these graphs, we divide the period

by| 4 |and make the chart, in order to detect the max/min/zero’s of the function r = f(6)

. Now consider a function r = f(#) which determines a curve in the plane where

(M) f: [0l = [0,00]
(2) f is continuous on [a, f]
3) B—a<2m.
Then the area bounded by polar curves r = f(#) and the rays § = « and 0§ = 3 is

6=5
_ 2
A= Lyer |

=«




o O » V

v

’ Area and Volume of Revolutions‘

Let’s start with some region R in the (2 dimensional) zy-plane and revolve R around an axis of revolution
to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the
volume of S.

e In parts a, fill in the boxes with: T or y.

e In parts b, ¢, and d, fill in the boxes with a formula involving some of:

2, 7, radius , base , radiusypig , radiusjitie , average radius , height , and/or thickness .

. Area via Riemann Sums. Let’s find the area of R by forming typical rectangles.

. We first partition either the axis or the axis. (We can pick either.)

. Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.

. If we partition the z-axis, where z is either z or y, the Az = of a typical rectangle.

. The area of a typical rectangle is (height) (base) ‘

. Disk/Washer Method. Let’s find the volume of the solid of revolution S using the disk/washer method.

a. If the axis of revolution is:

e the z-axis, or parallel to the x-axis, then we partition the axis.
e the y-axis, or parallel to the y-axis, then we partition the axis.

. Next, using the partition, we form typical disk/washer’s. Then we find the volume of each typical disk/washer.

. If we partition the z-axis, where z is either x or y, the Az = height of a tyical disk/washer.

. If we use the disk method, then the volume of a typical disk is:

7 (radius)? (height)

. If we use the washer method, then the volume of a typical washer is: (either form is fine)

or

T (mdiusbig)2 (height) — 7 (radiusjtie)? (height) = 7w [(radiusbig)2 — (radiushme)ﬂ (height)

. Shell Method. Let’s find the volume of this solid of revolution S using the shell method.

a. If the axis of revolution is:

e the z-axis, or parallel to the x-axis, then we partition the axis.
e the y-axis, or parallel to the y-axis, then we partition the aXis.

. Next, using the partition, we form typical shells. Then we find the volume of each typical shell.

. If we partition the z-axis, where z is either x or y, the Az = ’ thickness ‘ of a typical shell.

Also acceptable is Az = radiuspi; — radiusie.

. The volume of a typical shell is: (either form is fine)

21 (average radius) (height) (thickness) =  2m (radius) (height) (thickness)




