
Formula/Concepts You Need To Know

Review of some needed Trig. Identities for Integration

•. Your answers should be an angle in RADIANS.

• arccos( 1
2 ) = π

3 • arccos( -12 ) = 2π
3

• arcsin(12) = π
6 • arcsin( -12 ) = -π

6

• Can you do similar problems?

•. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ.

• cos(2θ) = cos2 θ − sin2 θ • sin(2θ) = 2 sin θ cos θ .

•. Half-angle formulas. Your answer should involve cos(2θ).

• cos2(θ) =
1 + cos (2θ)

2
• sin2(θ) =

1− cos (2θ)

2

•. Since cos2 θ + sin2 θ = 1, we know that the corresponding relationship beween:

• tangent (i.e., tan) and secant (i.e., sec) is 1 + tan2 θ = sec2 θ .

• cotangent (i.e., cot) and cosecant (i.e., csc) is 1 + cot2 θ = csc2 θ .

Remember Your Calculus I Integration Basics? In this part, a is a constant and a > 0.

•. If u 6= 0, then
∫
du
u = ln |u| + C

•. If a 6= 1, then
∫
au du = au

ln a + C

•.
∫

cosu du = sinu + C

•.
∫

sec2 u du = tanu + C

•.
∫

secu tanu du = secu + C

•.
∫

sinu du = - cosu + C

•.
∫

csc2 u du = - cotu + C

•.
∫

cscu cotu du = - cscu + C

•.
∫

tanu du = ln |secu| or= - ln |cosu| + C

•.
∫

cotu du = - ln |cscu| or= ln |sinu| + C

•.
∫

secu du = ln |secu+ tanu| or= - ln |secu− tanu| + C

•.
∫

cscu du = - ln |cscu+ cotu| or= ln |cscu− cotu| + C

•.
∫

1√
a2−u2 du = sin-1

(
u
a

)
+ C

•.
∫

1
a2+u2

du = 1
a tan-1

(
u
a

)
+ C

•.
∫

1
u
√
u2−a2 du = 1

a sec-1
(
|u|
a

)
+ C
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Integration from Calculus II

•. Partial Fraction Decomposition. Let’s integrate y = f(x)
g(x) , where f and g are polyonomials, by 1st finding its PDF.

• If [degree of f ] ≥ [degree of g], then one must first do long division .

• If [degree of f ] < [degree of g], then first factor y = g(x) into linear factors px+ q and irreducible

quadratic factors ax2 + bx+ c (to be sure it’s irreducible, you need b2 − 4ac < 0 ) .

Next, collect up like terms and follow the following rules.

Rule 1: For each factor of the form (px+ q)m where m ≥ 1, the decomposition of y = f(x)
g(x) contains a sum

of m partial fractions of the form, where each Ai is a real number,

A1
(px+q)1

+ A2
(px+q)2

+ . . . + Am
(px+q)m .

Rule 2: For each factor of the form (ax2 + bx+ c)n where n ≥ 1, the decomposition of y = f(x)
g(x) contains

a sum of n partial fractions of the form, where the Ai’s and Bi’s are real number,

A1x+B1
(ax2+bx+c)1

+ A2x+B2
(ax2+bx+c)2

+ . . . + Anx+Bn
(ax2+bx+c)n .

•. Integration by parts formula:
∫
u dv = uv −

∫
vdu

•. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.

• if the integrand involves a2 − u2, then one makes the substitution u = a sin θ .

• if the integrand involves a2 + u2, then one makes the substitution u = a tan θ .

• if the integrand involves u2 − a2, then one makes the substitution u = a sec θ .

Sequences

•. Let {an}∞n=1 be a sequence of real numbers. Complete the below sentences.

• The limit of {an}∞n=1 is the real number L provided for each ε > 0 there exists a natural

number N so that if the natural number n satisfies n > N then |L− an| < ε .

• If the limit of {an}∞n=1 is L ∈ R, then we denote this by limn→∞ an = L .

• {an}∞n=1 converges provided there exists a real number L so that limn→∞ an = L .

• {an}∞n=1 diverges provided {an}∞n=1 does not converge .

• {an}∞n=1 diverges provided limn→∞ an does not exist (i.e., DNE) .

•. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

• lim
n→∞

5n17 + 6n2 + 1

7n18 + 9n3 + 5
= 0 • lim

n→∞

36n17 − 6n2 − 1

4n17 + 9n3 + 5
= 36

4 or 9

• lim
n→∞

-5n18 + 6n2 + 1

7n17 + 9n3 + 5
= DNE or -∞ • lim

n→∞

√
36n17 − 6n2 − 1

4n17 + 9n3 + 5
=

√
36
4 or 3

• Can you do similar problems?

•. Let −∞ < r <∞. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

• If |r| < 1, then lim
n→∞

rn = 0 .

• If r = 1, then lim
n→∞

rn = 1 .

• If r > 1, then lim
n→∞

rn = DNE (tends to ∞) .

• If r = -1, then lim
n→∞

rn = DNE (oscillates between 1 and −1) .

• If r < -1, then lim
n→∞

rn = DNE (r2n →∞ while r2n+1 → −∞) .
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Series

I. In this section, all series
∑

are understood to be
∞∑
n=1

, unless otherwise indicated.

•. For a formal series
∑∞

n=1 an, where each an ∈ R, consider the corresponding sequence {sN}∞N=1 of partial

sums, so sN = S
∑N

n=1 an. Then the formal series
∑
an

• converges if and only if the limN→∞ sN exists

• converges to L ∈ R if and only if the limN→∞ sN exists and equals L

• diverges if and only if the limN→∞ sN does not exist .

Now assume, furthermore, that an ≥ 0 for each n. Then the sequence {sN}∞N=1 of partial sums either

• is bounded above (by some finite number), in which case the series
∑
an converges

or
• is not bounded above (by some finite number), in which case the series

∑
an diverges .

•. The nth-term test for an arbitrary series
∑
an.

If limn→∞ an 6= 0 or limn→∞ an does not exist, then
∑
an diverges .

•. Fix r ∈ R. For N ≥ 17, let sN =
∑N

n=17 rn (Note the sum starts at 17). Then, for N > 17,

• sN = r17 + r18 + . . . + rN (your answer can have . . .’s but not a
∑

sign)

• r sN = r18 + . . . + rN + rN+1 (your answer can have . . .’s but not a
∑

sign)

• (1− r) sN = r17 − rN+1 (your answer should have neither . . .’s nor a
∑

sign)

• and if r 6= 1, then sN = r17 − rN+1

1−r (your answer should have neither . . .’s nor a
∑

sign)

•. Geometric Series where −∞ < r <∞. The series
∑
rn (hint: look at the previous questions):

• converges if and only if |r| < 1

• diverges if and only if |r| ≥ 1 .

•. Integral Test for a positive-termed series
∑
an where an ≥ 0. Let f : [1,∞)→ R be so that an = f( n )

for each n ∈ N and y = f(x) is a continuous , positive , decreasing
(nonincsreasing is also ok)

function. Then we have the following.

(1) For each N > 2,

N∑
n= 2

an ≤
x=N∫
x=1

f(x) dx ≤
N-1∑

n= 1

an . (1)

Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N , N − 1, or N + 1.

Hint. Approximate (below and above) the
∫ N
1

f(x) dx by the area of N − 1 Riemann rectangles, each of base length ∆x = 1 .

(2) From the bounds in (1), we see that
∑
an converges if and only if

∫ x=∞
x=1 f(x) dx converges.
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(3) Now let
∑
an converge. We want to approximate the infinite sum

∑∞
n=1 an by the finite sum∑N

n=1 an within an error (i.e., remainder) of RN . To figure out how good this approximation is,

define RN as below and get a good (as one can) lower and upper approximation of RN , again using

Reimann sums. Fill in the 3 boxes with: a number, N , N − 1, or N + 1 .

0 ≤ RN
def
=

∞∑
n=1

an −
N∑
n=1

an =
∞∑

n= N + 1

an ≤
∞∫

x= N

f(x) dx .

•. p-series where 0 < p <∞. The series
∑ 1

np

• converges if and only if p > 1 .

• diverges if and only if p ≤ 1 .

This can be shown by using the integral test and comparing
∑ 1

np to (the easy to compute)
∫∞
x=1

1
xp dx .

•. Comparison Test for a positive-termed series
∑
an where an ≥ 0. (Fill in the blanks with an and/or bn.)

• If 0 ≤ an ≤ bn for all n ∈ N and
∑

bn converge, then
∑

an converge.

• If 0 ≤ bn ≤ an for all n ∈ N and
∑

bn diverge, then
∑

an diverge.

Hint: sing the song to yourself.

•. Limit Comparison Test for a positive-termed series
∑
an where an ≥ 0. Let bn > 0 and limn→∞

an
bn

= L.

If 0 < L < ∞ , then
∑
an converges if and only if

∑
bn converges .

•. Ratio and Root Tests for arbitrary-termed series
∑
an with −∞ < an <∞. Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or ρ = lim
n→∞

|an|
1
n .

• If ρ < 1 then
∑
an converges absolutely.

• If ρ > 1 then
∑
an diverges.

• If ρ = 1 then the test is inconclusive (in other words, the test fails).

•. Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).

Consider an alternating series
∑

(−1)nun where un > 0 for each n ∈ N.

If

• un > un+1 for each n ∈ N
• limn→∞ un = 0

then

•
∑

(−1)nun converges

• we can estimate (i.e., approximate) the infinite sum
∑∞

n=1(−1)nun by the finite sum
∑N

n=1(−1)nun

and the error (i.e. remainder) satisfies∣∣∣∣∣
∞∑
n=1

(−1)nun −
N∑
n=1

(−1)nun

∣∣∣∣∣ ≤ uN+1 .

•. By definition, for an arbitrary series
∑
an, (fill in these 4 boxes with converges or diverges).

•
∑
an is absolutely convergent if and only if

∑
|an| converges .

•
∑
an is conditionally convergent if and only if

∑
an converges and

∑
|an| diverges .
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•
∑
an is divergent if and only if

∑
an diverges .

•. Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following

FLOW CHART from class used to determine the behavior of a series
∑∞

n=17 an.

Does
∑
|an| converge?

Since |an| ≥ 0, use a positive term test:
integral test, CT, LCT, ratio/root test.

if NO⇒ Does
limn→∞ |an| = 0?

if NO⇒
∑
an is divergent

if YES ⇓ if YES ⇓∑
an is absolutely convergent Is

∑
an an alternating series?

if YES ⇓
Does

∑
an satisfy the conditions of the Alternating Series Test?

if YES ⇓∑
an is conditionally convergent

Power Series

Condsider a (formal) power series

h(x) =
∞∑
n=0

an (x− x0)n , (2)

with radius of convergence R ∈ [0,∞]. (Here x0 ∈ R is fixed and {an}∞n=0 is a fixed sequence of real numbers.)

•. Fill in the next for boxes with one of the following 4 choices: [a.] is always absolutely convergent (AC)

[b.] is always conditionally convergent (CC) [c.] is always divergent (DIV) [d.] can do anything,

i.e., there are examples showing that it can be AC, CC, or DIV.

(1) For x = x0, the power series h(x) in (2) a .

(2) For x ∈ R such that |x− x0| < R, the power series h(x) in (2) a .

(3) For x ∈ R such that |x− x0| > R the power series h(x) in (2) c .

(4) If R > 0, then for the endpoints x = x0 ±R, the power series h(x) in (2) d .

•. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the

power series in (2).

(1) The function y = h(x) is always differentiable on the interval (x0 −R, x0 +R) (make this

interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

h′(x) =
∞∑
n=1

nan (x− x0)n−1 . (3)

What can you say about the radius of convergence of the power series in (3)? It’s the same R .

(2) The function y = h(x) always has an antiderivative on the interval (x0 −R, x0 +R) (make

this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in

this interval, then∫ x=β

x=α
h(x) dx =

∞∑
n=0

an
n+ 1

(x− x0)n+1

∣∣∣∣∣
x=β

x=α

.
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Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x0.

Let y = PN (x) be the N th-order Taylor polynomial of y = f(x) about x0.

Let y = RN (x) be the N th-order Taylor remainder of y = f(x) about x0.

Let y = P∞(x) be the Taylor series of y = f(x) about x0.

Let cn be the nth Taylor coefficient of y = f(x) about x0.

a. The formula for cn is

cn = f (n)(x0)

n!

b. In open form (i.e., with . . . and without a
∑

-sign)

PN (x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3 + · · ·+ f (N)(x0)

N !
(x− x0)N

c. In closed form (i.e., with a
∑

-sign and without . . . )

PN (x) =
N∑
n=0

f (n)(x0)

n!
(x− x0)n

d. In open form (i.e., with . . . and without a
∑

-sign)

P∞(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n + . . .

e. In closed form (i.e., with a
∑

-sign and without . . . )

P∞(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

f. We know that f(x) = PN (x) +RN (x). Taylor’s BIG Theorem tells us that, for each x ∈ I,

RN (x) =
f (N+1)(c)

(N + 1)!
(x− x0)(N+1) for some c between x and x0 .

g. A Maclaurin series is a Taylor series with the center specifically specified as x0 = 0 .
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Commonly Used Taylor Series

I. Here, expansion refers to the power series expansion that is the Maclaurin series.

•. An expansion for y = ex is
∞∑
n=0

xn

n! , which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = cosx is
∞∑
n=0

(−1)n x2n

(2n)! , which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = sinx is
∞∑
n=0

(−1)n x2n+1

(2n+1)! , which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = 1
1−x is

∞∑
n=0

xn , which is valid precisely when x ∈ (−1, 1) .

•. An expansion for y = ln(1 +x) is
∞∑
n=1

(−1)n+1 xn

n , which is valid precisely when x ∈ (−1, 1] .

•. An expansion for y = arctanx is
∞∑
n=0

(−1)n x
2n+1

2n+1 , which is valid precisely when x ∈ [−1, 1] .

Polar Coordinates

I. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

•. A point with PC (r, θ) also has PC
(

r , θ + 2π
)

as well as
(
−r , θ + π

)
.

•. A point P ∈ R2 with CC (x, y) and PC (r, θ) satisfies the following.

x = r cos θ & y = r sin θ & r2 = x2 + y2 & tan θ =

{
y
x if x 6= 0

DNE if x = 0 .

•. The period of f(θ) = cos(kθ) and s of f(θ) = sin(kθ) is 2π
k To sketch these graphs, we divide the period

by 4 and make the chart, in order to detect the max/min/zero’s of the function r = f(θ) .

•. Now consider a function r = f(θ) which determines a curve in the plane where

(1) f : [α, β] → [0,∞]

(2) f is continuous on [α, β]

(3) β − α ≤ 2π .

Then the area bounded by polar curves r = f(θ) and the rays θ = α and θ = β is

A =

∫ θ=β

θ=α

1
2 [f(θ)]2 dθ .
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Area and Volume of Revolutions

Let’s start with some region R in the (2 dimensional) xy-plane and revolve R around an axis of revolution

to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the

volume of S.

• In parts a, fill in the boxes with: x or y.

• In parts b, c, and d, fill in the boxes with a formula involving some of:

2 , π , radius , base , radiusbig , radiuslittle , average radius , height , and/or thickness .

I. Area via Riemann Sums. Let’s find the area of R by forming typical rectangles.

a. We first partition either the x –axis or the y –axis. (We can pick either.)

�. Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.

b. If we partition the z-axis, where z is either x or y, the ∆z = base of a typical rectangle.

c. The area of a typical rectangle is (height) (base) .

I. Disk/Washer Method. Let’s find the volume of the solid of revolution S using the disk/washer method.

a. If the axis of revolution is:

• the x-axis, or parallel to the x-axis, then we partition the x –axis.

• the y-axis, or parallel to the y-axis, then we partition the y –axis.

�. Next, using the partition, we form typical disk/washer’s. Then we find the volume of each typical disk/washer.

b. If we partition the z-axis, where z is either x or y, the ∆z = height of a tyical disk/washer.

c. If we use the disk method, then the volume of a typical disk is:

π (radius)2 (height) .

d. If we use the washer method, then the volume of a typical washer is: (either form is fine)

π (radiusbig)
2 (height) − π (radiuslittle)

2 (height)
or
= π

[
(radiusbig)

2 − (radiuslittle)
2
]

(height) .

I. Shell Method. Let’s find the volume of this solid of revolution S using the shell method.

a. If the axis of revolution is:

• the x-axis, or parallel to the x-axis, then we partition the y –axis.

• the y-axis, or parallel to the y-axis, then we partition the x –axis.

�. Next, using the partition, we form typical shells. Then we find the volume of each typical shell.

b. If we partition the z-axis, where z is either x or y, the ∆z = thickness of a typical shell.

Also acceptable is ∆z = radiusbig − radiuslittle.

c. The volume of a typical shell is: (either form is fine)

2π (average radius) (height) (thickness)
or
= 2π (radius) (height) (thickness)
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