Formula/Concepts You Need To Know

Review of some needed Trig. Identities for Integration

• Your answers should be an angle in RADIANS.
 - \(\arccos\left(\frac{1}{2}\right) = \) ________ \(\arccos\left(-\frac{1}{2}\right) = \) ________
 - \(\arcsin\left(\frac{1}{2}\right) = \) ________ \(\arcsin\left(-\frac{1}{2}\right) = \) ________
 - Can you do similar problems?

• Double-angle formulas. Your answer should involve trig functions of \(\theta \), and not of \(2\theta \).
 - \(\cos(2\theta) = \) ____________ \(\sin(2\theta) = \) ____________

• Half-angle formulas. Your answer should involve \(\cos(2\theta) \).
 - \(\cos^2(\theta) = \) ________ \(\sin^2(\theta) = \) ________

• Since \(\cos^2\theta + \sin^2\theta = 1 \), we know that the corresponding relationship between:
 - tangent (i.e., tan) and secant (i.e., sec) is ________________.
 - cotangent (i.e., cot) and cosecant (i.e., csc) is ________________.

Remember Your Calculus I Integration Basics? In this part, \(a \) is a constant and \(a > 0 \).

• If \(u \neq 0 \), then \(\int \frac{du}{u} = \) ____________ + C
• If \(a \neq 1 \), then \(\int a^u \, du = \) ____________ + C
• \(\int \cos u \, du = \) ____________ + C
• \(\int \sec^2 u \, du = \) ____________ + C
• \(\int \sec u \tan u \, du = \) ____________ + C
• \(\int \sin u \, du = \) ____________ + C
• \(\int \csc^2 u \, du = \) ____________ + C
• \(\int \csc u \cot u \, du = \) ____________ + C
• \(\int \tan u \, du = \) ____________ + C
• \(\int \cot u \, du = \) ____________ + C
• \(\int \sec u \, du = \) ____________ + C
• \(\int \csc u \, du = \) ____________ + C
• \(\int \frac{1}{\sqrt{a^2-u^2}} \, du = \) ____________ + C
• \(\int \frac{1}{a^2+u^2} \, du = \) ____________ + C
• \(\int \frac{1}{u\sqrt{u^2-a^2}} \, du = \) ____________ + C
Integration from Calculus II

- **Partial Fraction Decomposition.** Let’s integrate \(y = \frac{f(x)}{g(x)} \), where \(f \) and \(g \) are polynomials, by 1st finding its PDF.
 - If [degree of \(f \)] \(\geq \) [degree of \(g \)], then one must first do __________.
 - If [degree of \(f \)] \(< \) [degree of \(g \)], then first factor \(y = g(x) \) into factors \(px + q \) and irreducible factors \(ax^2 + bx + c \) (to be sure it’s irreducible, you need __________) .

Rule 1: For each factor of the form \((px + q)^m\) where \(m \geq 1 \), the decomposition of \(y = \frac{f(x)}{g(x)} \) contains a sum of partial fractions of the form, where each \(A_i \) is a real number,

Rule 2: For each factor of the form \((ax^2 + bx + c)^n\) where \(n \geq 1 \), the decomposition of \(y = \frac{f(x)}{g(x)} \) contains a sum of partial fractions of the form, where the \(A_i \)'s and \(B_i \)'s are real number,

- **Integration by parts formula:** \(\int u \, dv = \ldots \)
- **Trig. Substitution.** (Recall that the integrand is the function you are integrating.) Here, \(a \) is a constant and \(a > 0 \).
 - if the integrand involves \(a^2 - u^2 \), then one makes the substitution \(u = \ldots \).
 - if the integrand involves \(a^2 + u^2 \), then one makes the substitution \(u = \ldots \).
 - if the integrand involves \(u^2 - a^2 \), then one makes the substitution \(u = \ldots \).

- **Sequences**
 - Let \(\{a_n\}_{n=1}^{\infty} \) be a sequence of real numbers. Complete the below sentences.
 - The limit of \(\{a_n\}_{n=1}^{\infty} \) is the real number \(L \) provided for each \(\epsilon > 0 \) there exists a natural number \(N \) so that if the natural number \(n \) satisfies ___ > ___ then ___ < ___.
 - If the limit of \(\{a_n\}_{n=1}^{\infty} \) is \(L \in \mathbb{R} \), then we denote this by __________.
 - \(\{a_n\}_{n=1}^{\infty} \) converges provided __________.
 - \(\{a_n\}_{n=1}^{\infty} \) diverges provided \(\{a_n\}_{n=1}^{\infty} \) __________.
 - \(\{a_n\}_{n=1}^{\infty} \) diverges provided \(\lim_{n \to \infty} a_n \) __________.
 - **Practice taking basic limits.** (Important, e.g., for Ratio and Root Tests.)
 - \(\lim_{n \to \infty} \frac{5n^{17} + 6n^2 + 1}{7n^{18} + 9n^3 + 5} = \ldots \)
 - \(\lim_{n \to \infty} \frac{36n^{17} - 6n^2 - 1}{4n^{17} + 9n^3 + 5} = \ldots \)
 - \(\lim_{n \to \infty} \frac{-5n^{18} + 6n^2 + 1}{7n^{17} + 9n^3 + 5} = \ldots \)
 - \(\lim_{n \to \infty} \sqrt[3]{\frac{36n^{17} - 6n^2 - 1}{4n^{17} + 9n^3 + 5}} = \ldots \)
 - Can you do similar problems?
 - Let \(-\infty < r < \infty \). (Needed for Geometric Series. Warning, don’t confuse sequences with series.)
 - If \(|r| < 1 \), then \(\lim_{n \to \infty} r^n = \ldots \).
 - If \(r = 1 \), then \(\lim_{n \to \infty} r^n = \ldots \).
 - If \(r > 1 \), then \(\lim_{n \to \infty} r^n = \ldots \).
 - If \(r = -1 \), then \(\lim_{n \to \infty} r^n = \ldots \).
 - If \(r < -1 \), then \(\lim_{n \to \infty} r^n = \ldots \).
In this section, all series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

- For a formal series $\sum_{n=1}^{\infty} a_n$, where each $a_n \in \mathbb{R}$, consider the corresponding sequence $\{s_N\}_{N=1}^{\infty}$ of partial sums, so $s_N = \sum_{n=1}^{N} a_n$. Then the formal series $\sum a_n$
 - converges if and only if ______________________
 - converges to $L \in \mathbb{R}$ if and only if ______________________
 - diverges if and only if ______________________.

Now assume, furthermore, that $a_n \geq 0$ for each n. Then the sequence $\{s_N\}_{N=1}^{\infty}$ of partial sums either
 - is bounded above (by some finite number), in which case the series $\sum a_n$ ________________
 - or
 - is not bounded above (by some finite number), in which case the series $\sum a_n$ ________________.

- The nth-term test for an arbitrary series $\sum a_n$.
 If $\lim_{n \to \infty} a_n \neq 0$ or $\lim_{n \to \infty} a_n$ does not exist, then $\sum a_n$ ________________.

- Fix $r \in \mathbb{R}$. For $N \geq 17$, let $s_N = \sum_{n=17}^{N} r^n$ (Note the sum starts at 17). Then, for $N > 17$,
 - $s_N =$ ______________________ (your answer can have \ldots’s but not a \sum sign)
 - $r s_N =$ ______________________ (your answer can have \ldots’s but not a \sum sign)
 - $(1 - r) s_N =$ ______________________ (your answer should have neither \ldots’s nor a \sum sign)
 - and if $r \neq 1$, then $s_N =$ ______________________ (your answer should have neither \ldots’s nor a \sum sign)

- Geometric Series where $-\infty < r < \infty$. The series $\sum r^n$ (hint: look at the previous questions):
 - converges if and only if $|r|$ ________________
 - diverges if and only if $|r|$ ________________.

- Integral Test for a positive-termed series $\sum a_n$ where $a_n \geq 0$. Let $f: [1, \infty) \to \mathbb{R}$ be so that $a_n = f(\square)$ for each $n \in \mathbb{N}$ and $y = f(x)$ is a __________ function, then we have the following.
 (1) For each $N > 2$,
 $$\sum_{n=1}^{N} a_n \leq \int_{x=1}^{x=N} f(x) \, dx \leq \sum_{n=\square}^{\square} a_n \, .$$
 (1)
 Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N, $N - 1$, or $N + 1$.
 Hint. Approximate (below and above) the $\int_{1}^{N} f(x) \, dx$ by the area of $N - 1$ Riemann rectangles, each of base length $\Delta x = 1$.
 (2) From the bounds in (1), we see that $\sum a_n$ converges if and only if ________________ converges.
(3) Now let $\sum a_n$ converge. We want to approximate the infinite sum $\sum_{n=1}^{\infty} a_n$ by the finite sum $\sum_{n=1}^{N} a_n$ within an error (i.e., remainder) of R_N. To figure out how good this approximation is, define R_N as below and get a good (as one can) lower and upper approximation of R_N, again using Reimann sums. Fill in the 3 boxes with: a number, N, $N-1$, or $N+1$.

$$ R_N = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{N} a_n = \sum_{n=1}^{\infty} a_n - \int_{x=1}^{\infty} f(x) \, dx. $$

- **p-series** where $0 < p < \infty$. The series $\sum \frac{1}{n^p}$
 - converges if and only if $p > 1$.
 - diverges if and only if $p \leq 1$.

This can be shown by using the **comparison test** and comparing $\sum \frac{1}{n^p}$ to (the easy to compute) $\int_{x=1}^{\infty} \frac{1}{x} \, dx$.

- **Comparison Test** for a positive-termed series $\sum a_n$ where $a_n \geq 0$.
 - If $0 \leq a_n \leq b_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ converge, then $\sum a_n$ converge.
 - If $0 \leq b_n \leq a_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ diverge, then $\sum a_n$ diverge.

Hint: sing the song to yourself.

- **Limit Comparison Test** for a positive-termed series $\sum a_n$ where $a_n \geq 0$. Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.
 - If $0 < L < \infty$, then $\sum a_n$ converges if and only if $\sum b_n$ converge.
 - If $L < 0$, then $\sum a_n$ diverges.
 - If $L > 0$, then the test is inconclusive (in other words, the test fails).

- **Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).**
 Consider an alternating series $\sum (-1)^n u_n$ where $u_n > 0$ for each $n \in \mathbb{N}$.
 If
 - u_n u_{n+1} for each $n \in \mathbb{N}$
 - $\lim_{n \to \infty} u_n$ =
 then
 - $\sum (-1)^n u_n$
 - we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty} (-1)^n u_n$ by the finite sum $\sum_{n=1}^{N} (-1)^n u_n$ and the error (i.e. remainder) satisfies
 $$ \left| \sum_{n=1}^{\infty} (-1)^n u_n - \sum_{n=1}^{N} (-1)^n u_n \right| \leq \square. $$
 - By definition, for an arbitrary series $\sum a_n$, (fill in these 4 boxes with converges or diverges).
 - $\sum a_n$ is absolutely convergent if and only if $\sum |a_n|$
 - $\sum a_n$ is conditionally convergent if and only if $\sum a_n$ and $\sum |a_n|$.

• \(\sum a_n \) is divergent if and only if \(\sum a_n \) .

• Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following FLOW CHART from class used to determine the behavior of a series \(\sum_{n=1}^{\infty} a_n \).

| Does \(\sum |a_n| \) converge? |
|----------------------------------|
| Yes |
| \(\sum a_n \) is |
| if NO |
| \[
\lim_{n \to \infty} |a_n| = 0 \]
| if NO \(\sum a_n \) is |
| Is \(\sum a_n \) an alternating series? |
| if YES \(\sum a_n \) is |
| Does \(\sum a_n \) satisfy the conditions of the Alternating Series Test? |
| if YES \(\sum a_n \) is |

Power Series

Consider a (formal) power series

\[
h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \tag{2}
\]

with radius of convergence \(R \in [0, \infty] \). (Here \(x_0 \in \mathbb{R} \) is fixed and \(\{a_n\}_{n=0}^{\infty} \) is a fixed sequence of real numbers.)

• Fill in the next 4 boxes with one of the following 4 choices:
 - [a.] is always absolutely convergent (AC)
 - [b.] is always conditionally convergent (CC)
 - [c.] is always divergent (DIV)
 - [d.] can do anything, i.e., there are examples showing that it can be AC, CC, or DIV.

 1. For \(x = x_0 \), the power series \(h(x) \) in (2) ______.
 2. For \(x \in \mathbb{R} \) such that \(|x - x_0| < R \), the power series \(h(x) \) in (2) ______.
 3. For \(x \in \mathbb{R} \) such that \(|x - x_0| > R \) the power series \(h(x) \) in (2) ______.
 4. If \(R > 0 \), then for the endpoints \(x = x_0 \pm R \), the power series \(h(x) \) in (2) ______.

• For the next 2 problems, let \(R > 0 \) and fill-in the boxes. Consider the function \(y = h(x) \) defined by the power series in (2).

 1. The function \(y = h(x) \) is always differentiable on the interval ______ (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

\[
h'(x) = \sum_{n=1}^{\infty} \quad \tag{3}
\]

What can you say about the radius of convergence of the power series in (3)? ______

 2. The function \(y = h(x) \) always has an antiderivative on the interval ______ (make this interval as large as it can be, but still keeping the statement true). Furthermore, if \(\alpha \) and \(\beta \) are in this interval, then

\[
\int_{x=\alpha}^{x=\beta} h(x) \, dx = \sum_{n=0}^{\infty} \quad |x=\beta| \, x=\alpha.
\]
Taylor/Maclaurin Polynomials and Series

Let \(y = f(x) \) be a function with derivatives of all orders in an interval \(I \) containing \(x_0 \).

Let \(y = P_N(x) \) be the \(N \)-th-order Taylor polynomial of \(y = f(x) \) about \(x_0 \).

Let \(y = R_N(x) \) be the \(N \)-th-order Taylor remainder of \(y = f(x) \) about \(x_0 \).

Let \(y = P_\infty(x) \) be the Taylor series of \(y = f(x) \) about \(x_0 \).

Let \(c_n \) be the \(n \)-th Taylor coefficient of \(y = f(x) \) about \(x_0 \).

a. The formula for \(c_n \) is

\[c_n = \]

b. In open form (i.e., with \(... \) and without a \(\sum \)-sign)

\[P_N(x) = \]

c. In closed form (i.e., with a \(\sum \)-sign and without \(... \))

\[P_N(x) = \]

d. In open form (i.e., with \(... \) and without a \(\sum \)-sign)

\[P_\infty(x) = \]

e. In closed form (i.e., with a \(\sum \)-sign and without \(... \))

\[P_\infty(x) = \]

f. We know that \(f(x) = P_N(x) + R_N(x) \). Taylor’s BIG Theorem tells us that, for each \(x \in I \),

\[R_N(x) = \]

for some \(c \) between \(\square \) and \(\square \).

\[f(x) = P_N(x) + R_N(x) \]

\[\text{for some } c \text{ between } \square \text{ and } \square \].

g. A Maclaurin series is a Taylor series with the center specifically specified as \(x_0 = \)

\[\square \].
Commonly Used Taylor Series

- Here, \textit{expansion} refers to the power series expansion that is the Maclaurin series.
 - An expansion for \(y = e^x \) is , which is valid precisely when \(x \in \) .
 - An expansion for \(y = \cos x \) is , which is valid precisely when \(x \in \) .
 - An expansion for \(y = \sin x \) is , which is valid precisely when \(x \in \) .
 - An expansion for \(y = \frac{1}{1-x} \) is , which is valid precisely when \(x \in \) .
 - An expansion for \(y = \ln(1+x) \) is , which is valid precisely when \(x \in \) .
 - An expansion for \(y = \arctan x \) is , which is valid precisely when \(x \in \) .

Polar Coordinates

- Here, CC stands for \textit{Cartesian coordinates} while PC stands for \textit{polar coordinates}.
 - A point with PC \((r, \theta)\) also has PC \((r, \theta + 2\pi)\) as well as \((r, \theta + \pi)\).
 - A point \(P \in \mathbb{R}^2 \) with CC \((x, y)\) and PC \((r, \theta)\) satisfies the following.
 \[
 x = \square \quad \& \quad y = \square \quad \& \quad r^2 = \square \quad \& \quad \square = \begin{cases} \frac{y}{x} & \text{if } x \neq 0 \\ \text{DNE} & \text{if } x = 0 \end{cases}.
 \]
 - The period of \(f(\theta) = \cos(k\theta) \) and \(s \) of \(f(\theta) = \sin(k\theta) \) is \square. To sketch these graphs, we divide the period by \square and make the chart, in order to detect the \square.
 - Now consider a function \(r = f(\theta) \) which determines a curve in the plane where
 \begin{enumerate}
 \item \(f : [\alpha, \beta] \rightarrow [0, \infty] \)
 \item \(f \) is continuous on \([\alpha, \beta]\)
 \item \(\beta - \alpha \leq 2\pi \).
 \end{enumerate}
 Then the area bounded by polar curves \(r = f(\theta) \) and the rays \(\theta = \alpha \) and \(\theta = \beta \) is
 \[
 A = \int_{\theta=\alpha}^{\theta=\beta} \square \, d\theta.
 \]
Area and Volume of Revolutions

Let’s start with some region R in the (2 dimensional) xy-plane and revolve R around an axis of revolution to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the volume of S.

- In parts a, fill in the boxes with: x or y.
- In parts b, c, and d, fill in the boxes with a formula involving some of: 2, π, radius, base, radius_{big}, radius_{little}, average radius, height, and/or thickness.

▶ Area via Riemann Sums. Let’s find the area of R by forming typical rectangles.

a. We first partition either the x-axis or the y-axis.

☐. Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.

b. If we partition the z-axis, where z is either x or y, the $\Delta z =$ of a typical rectangle.

c. The area of a typical rectangle is.

▶ Disk/Washer Method. Let’s find the volume of the solid of revolution S using the disk/washer method.

a. If the axis of revolution is:
 - the x-axis, or parallel to the x-axis, then we partition the x-axis.
 - the y-axis, or parallel to the y-axis, then we partition the y-axis.

☐. Next, using the partition, we form typical disk/washer’s. Then we find the volume of each typical disk/washer.

b. If we partition the z-axis, where z is either x or y, the $\Delta z =$ of a typical disk/washer.

c. If we use the disk method, then the volume of a typical disk is:

d. If we use the washer method, then the volume of a typical washer is:

▶ Shell Method. Let’s find the volume of this solid of revolution S using the shell method.

a. If the axis of revolution is:
 - the x-axis, or parallel to the x-axis, then we partition the x-axis.
 - the y-axis, or parallel to the y-axis, then we partition the y-axis.

☐. Next, using the partition, we form typical shells. Then we find the volume of each typical shell.

b. If we partition the z-axis, where z is either x or y, the $\Delta z =$ of a typical shell.

c. The volume of a typical shell is: