’Formula/Concepts You Need To Know‘

’Review of some needed Trig. Identities for Integration‘

e. Your answers should be an angle in RADIANS.

e arccos( 3 ) = e arccos( -

N~—
I

D= N[
S~—

e arcsin(3) = e arcsin( -

e Can you do similar problems?

. Double-angle formulas. Your answer should involve trig functions of 6, and not of 26.
e cos(26) = o sin(260) =

. Half-angle formulas. Your answer should involve cos(26).

o cos?(f) = e sin?(f) =

. Since cos? 0 + sin? # = 1, we know that the corresponding relationship beween:

e tangent (i.e., tan) and secant (i.e., sec) is

e cotangent (i.e., cot) and cosecant (i.e., csc) is

’Remember Your Calculus I Integration Basics? In this part, a is a constant and a > 0.
o.Ifu;éO,thenf%": +C
o. If a # 1, then [a"du = +C
o. [cosudu = +C
0.fsec2udu = +C
o. [secutanudu = +C
o. [sinudu = +C
o. [cscPudu = +C
. [cscucotudu = +C
o. [tanudu = +C
o. [cotudu = +C
o. [secudu = +C
o. [cscudu = +C
o. f\/ﬁdu = +C
o [ o du = +C
.. fu\/uéﬁ du = +C




’Integration from Calculus II‘

. Partial Fraction Decomposition. Let’s integrate y = %, where f and g are polyonomials, by 15¢ finding its PDF.

o If [degree of f] > [degree of g], then one must first do .
o If [degree of f] < [degree of g], then first factor y = g(z) into I:' factors pr + ¢ and irreducible

factors ax? + bz + ¢ (to be sure it’s irreducible, you need I:' ) .

Next, collect up like terms and follow the following rules.
Rule 1: For each factor of the form (pz + ¢)" where m > 1, the decomposition of y = % contains a sum

of D partial fractions of the form, where each A; is a real number,

Rule 2: For each factor of the form (ax? + bz + ¢)™ where n > 1, the decomposition of y = % contains

a sum of D partial fractions of the form, where the A;’s and B;’s are real number,

. Integration by parts formula: [udv =

. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.
2

e if the integrand involves a® — 42, then one makes the substitution v =
e if the integrand involves a? + u?, then one makes the substitution v =

2 — 42, then one makes the substitution v =

Sequences

. Let {a,}5°; be a sequence of real numbers. Complete the below sentences.
e The limit of {a,}72; is the real number L provided for each € > 0 there exists a natural
number N so that if the natural number n satisfies > then <
o If the limit of {a,} 2, is L € R, then we denote this by
o {a,}5° | converges provided
o {a,} 2, diverges provided {a,}5>;
o {a,}>° diverges provided lim,_, ay,
. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

e if the integrand involves u

i 5ni7 +6n% +1 i 36n17 —6n% — 1
[ ] m — = [ ] 11m =
nroo TN +9p3 +5  ———————————— n—ro0 4nl7 +9n3 +5
o -4 6n?+1 ) 36n17 —6n2 — 1
e lim = e lim =
nesoo TRT+9n3 +5 ——————————— n—oo \ 4nl7 4+ 9n3 +5

e Can you do similar problems?
. Let —oo <7 < c0. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

o If || < 1, then lim r":’ ‘
n—oo

e If r =1, then limr”:’ ‘
n—o0 ‘

If » > 1, then lim ™ =
If r =-1, then lim r":’ ‘
|

n—oo
n—o0

If r < -1, then lim r"

n—oo




Series

o0

». In this section, all series ) | are understood to be Z , unless otherwise indicated.

n=1

e. For a formal series > ° | a,, where each a, € R, consider the corresponding sequence {sy}%_; of partial

sums, so sy = S ij:l ap. Then the formal series ) ay,

e converges if and only if

e converges to L € R if and only if

e diverges if and only if

Now assume, furthermore, that a, > 0 for each n. Then the sequence {sy}3_; of partial sums either

e is bounded above (by some finite number), in which case the series > a,

or

e is not bounded above (by some finite number), in which case the series ) a, :

e. The ntP-term test for an arbitrary series 3 a,.

If limy,—y00 @y, # 0 or limy, o a,, does not exist, then > a, ’

eo. Fix r € R. For N > 17, let sy = S0_ - 7™ (Note the sum starts at 17). Then, for N > 17,

oSy = (your answer can have ...’s but not a ) sign)
ersy = (your answer can have ...’s but not a ) sign)

e (l—r)sy = (your answer should have neither ...’s nor a ) sign)
e and if r # 1, then sy = (your answer should have neither ...’s nor a ) sign)

o. Geometric Series where —oo < r < co. The series ) " (hint: look at the previous questions):

e converges if and only if |r| ’ ‘

e diverges if and only if |r| ’ ‘ .

o. Integral Test for a positive-termed series ) | a, where a, > 0. Let f: [1,00) — R be so that a,, = f( I:' )

for each n € N and y = f(z) isa’

function. Then we have the following.

(1) For each N > 2,

(1)

Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N, N —1, or N + 1.

Hint. Approximate (below and above) the le f(x) dz by the area of N — 1 Riemann rectangles, each of base length Az =1 .

(2) From the bounds in (1), we see that > a,, converges if and only if

converges.



(3) Now let )" a, converge. We want to approximate the infinite sum > >, a, by the finite sum
27]:[:1 ap, within an error (i.e., remainder) of Ry. To figure out how good this approximation is,
define Ry as below and get a good (as one can) lower and upper approximation of Ry, again using

Reimann sums. Fill in the 3 boxes with: a number, N, N —1,or N + 1.

oS) N
I:' < Ry def Zan—Zan = Z an, < / flx)dx .
n=1 n=1

. p-series where 0 < p < co. The series > n—lp

e converges if and only if p ’ ‘ .

e diverges if and only if p ’ ‘ .

This can be shown by using the test and comparing » n%, to (the easy to compute) f;o dx .

=1
. Comparison Test for a positive-termed series Y a,, where a,, > 0. (Fill in the blanks with a,, and/or by.)

e If0<a, <b, foralln € Nand I:' converge, then |:| converge.
e If0<b, <a,foralln € Nand ) I:' diverge, then >’ I:' diverge.

Hint: sing the song to yourself.

. Limit Comparison Test for a positive-termed series ) a,, where a,, > 0. Let b, > 0 and lim,,_,, %= = L.

bn,
If I:' <L< I:' , then > a,, converges if and only if ’

. Ratio and Root Tests for arbitrary-termed series _ a,, with —oo < a,, < co. Let

p = lim n+1 or p= lim ]an|% .
n—0oo | Ap n—00
o If p then > a, converges absolutely.
o If p then > a, diverges.

o If p I:' then the test is inconclusive (in other words, the test fails).
. Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).

Consider an alternating series » (—1)"u,, where wu, > 0 for each n € N.

If
° u, Un41 for each n € N
[ limn_>oo Up =

then

e > (—1)"up ’ ‘

e we can estimate (i.e., approximate) the infinite sum 3.°°  (—1)™u,, by the finite sum S>> (—=1)"u,,

and the error (i.e. remainder) satisfies

o) N
D ()"un = 3 (=1)"un| <
n=1 n=1

. By definition, for an arbitrary series ) ay, (fill in these 4 boxes with converges or diverges).

e > a, is absolutely convergent if and only if >_ |a,| ’

e > a, is conditionally convergent if and only if > ay, I:' and > |an| I:' .




e > a, is divergent if and only if }_ a, I:' .

e. Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following
FLOW CHART from class used to determine the behavior of a series > 7 |- ap.

Does > |an| converge?
Since |a,| > 0, use a positive term test:
integral test, CT, LCT, ratio/root test.

if NO | Does if NO
lim, 0 |ay| = 07

> ap is ’

if YES || if YES |}
> ay is Is }_ a, an alternating series?
if YES |}
Does > ay, satisfy the conditions of the Alternating Series Test?
if YES |}

> ay is ’ ‘

’ Power Series ‘

Condsider a (formal) power series
o0

h(z) = Y an(z )", (2)
n=0
with radius of convergence R € [0,00]. (Here zg € R is fixed and {a, }3°, is a fixed sequence of real numbers.)

e. Fill in the next for boxes with one of the following 4 choices: [a.] is always absolutely convergent (AC)
[b.] is always conditionally convergent (CC) [c.] is always divergent (DIV) [d.] can do anything,
i.e., there are examples showing that it can be AC, CC, or DIV.

(1) For & = x0, the power series h(x) in (2)

(2) For x € R such that |x — zg| < R, the power series h(z) in (2)

(3) For x € R such that | — z9| > R the power series h(z) in (2)

(4) If R > 0, then for the endpoints x = z¢ £ R, the power series h(z) in (2)

e. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the
power series in (2).

(1) The function y = h(z) is always differentiable on the interval ’ ‘ (make this
interval as large as it can be, but still keeping the statement true). Furthermore, on this interval
oo
W) =) : (3)
n=1

What can you say about the radius of convergence of the power series in (3)? ’ ‘

(2) The function y = h(z) always has an antiderivative on the interval ’ ‘ (make

this interval as large as it can be, but still keeping the statement true). Futhermore, if o and  are in

this interval, then

=0 00 x=p
/ h(z)dz = Z
Tr=x n=0 x=a




’Taylor/ Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing .
Let y = Py(x) be the N*-order Taylor polynomial of y = f(x) about z.

Let y = Ry(x) be the N*'-order Taylor remainder of y = f(x) about .

Let y = Py (z) be the Taylor series of y = f(z) about x.

Let ¢, be the n'" Taylor coefficient of y = f(z) about .

. The formula for ¢, is

. In open form (i.e., with ... and without a > -sign)

Pn(z) =

. In closed form (i.e., with a ) -sign and without ... )

PN(x) =

. In open form (i.e., with ... and without a > -sign)

Poo(z) =

. In closed form (i.e., with a ) -sign and without ... )

Pyo(z) =

. We know that f(x) = Py(z) + Ry(z). Taylor’s BIG Theorem tells us that, for each = € I,

Ry(z) = for some ¢ between and

. A Maclaurin series is a Taylor series with the center specifically specified as xy =




Commonly Used Taylor Series

. Here, expansion refers to the power series expansion that is the Maclaurin series.

. An expansion for y = e” is , which is valid precisely when x € I:' .

. An expansion for y = cosz is , which is valid precisely when x € I:' )

. An expansion for y = ﬁ is , which is valid precisely when x €

. An expansion for y = sinz is , which is valid precisely when x € I:' .

. An expansion for y = In(1 4 x) is , which is valid precisely when x €

|
I

. An expansion for y = arctan x is , which is valid precisely when x €

’ Polar Coordinates ‘

. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

. A point with PC (r, ) also has PC (I:| , 0+ 27r> as well as < I:' , 0+ 7r) .
. A point P € R? with CC (x,y) and PC (r, ) satisfies the following.

Yo itz £0

. The period of f(0) = cos(kf) and s of f(f) = sin(k0) is To sketch these graphs, we divide the period

by and make the chart, in order to detect the

. Now consider a function r = f(#) which determines a curve in the plane where

(M) f: [0l = [0,00]
(2) f is continuous on [a, f]
3) B—a<2m.
Then the area bounded by polar curves r = f(#) and the rays § = « and 0§ = 3 is

6=5
A = / de .
0=«




v
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. If we use the washer method, then the volume of a typical washer is:

’ Area and Volume of Revolutions‘

Let’s start with some region R in the (2 dimensional) zy-plane and revolve R around an axis of revolution
to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the
volume of S.

e In parts a, fill in the boxes with: T or y.

e In parts b, ¢, and d, fill in the boxes with a formula involving some of:

2, 7, radius , base , radiusypig , radiusjitie , average radius , height , and/or thickness .

. Area via Riemann Sums. Let’s find the area of R by forming typical rectangles.

. We first partition either the I:I»axis or the I:I»axis.

. Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.

. If we partition the z-axis, where z is either x or y, the Az = |:| of a typical rectangle.

. The area of a typical rectangle is ‘

. Disk/Washer Method. Let’s find the volume of the solid of revolution S using the disk/washer method.

. If the axis of revolution is:

e the z-axis, or parallel to the x-axis, then we partition the I:l»axis.
e the y-axis, or parallel to the y-axis, then we partition the I:I»axis.

. Next, using the partition, we form typical disk/washer’s. Then we find the volume of each typical disk/washer.

. If we partition the z-axis, where z is either x or y, the Az = I:| of a tyical disk/washer.
. If we use the disk method, then the volume of a typical disk is:

. Shell Method. Let’s find the volume of this solid of revolution S using the shell method.

. If the axis of revolution is:

e the z-axis, or parallel to the z-axis, then we partition the I:I»axis.
e the y-axis, or parallel to the y-axis, then we partition the I:I»axis.

. Next, using the partition, we form typical shells. Then we find the volume of each typical shell.

. If we partition the z-axis, where z is either x or y, the Az = ’ ‘ of a typical shell.

. The volume of a typical shell is:




