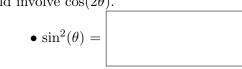
Formula/Concepts You Need To Know

Review of some needed Trig. Identities for Integration

- •. Your answers should be an angle in **RADIANS**.
 - $\operatorname{arccos}(\frac{1}{2}) =$ $\operatorname{arccos}(-\frac{1}{2}) =$ $\operatorname{arccos}(-\frac{1}{2}) =$ $\operatorname{arccos}(-\frac{1}{2}) =$
 - Can you do similar problems?

•. Double-angle formulas. Your answer should involve trig functions of θ , and not of 2θ .

- $\cos(2\theta) = _$ $\sin(2\theta) = _$.
- •. Half-angle formulas. Your answer should involve $\cos(2\theta)$.
 - $\cos^2(\theta) =$



•. Since $\cos^2 \theta + \sin^2 \theta = 1$, we know that the corresponding relationship between:

- tangent (i.e., tan) and secant (i.e., sec) is ______.
- cotangent (i.e., cot) and cosecant (i.e., csc) is _____

Remember Your Calculus I Integration Basics?

In this part, a is a constant and a > 0.

•. If $u \neq 0$, then $\int \frac{du}{u} =$	+ C	
•. If $a \neq 1$, then $\int a^u du =$	+ C	
•. $\int \cos u du =$		+ <i>C</i>
•. $\int \sec^2 u du =$		+ <i>C</i>
•. $\int \sec u \tan u du =$		+ <i>C</i>
•. $\int \sin u du =$		+ <i>C</i>
•. $\int \csc^2 u du =$		+ <i>C</i>
•. $\int \csc u \cot u du =$		+ <i>C</i>
•. $\int \tan u du =$		+ <i>C</i>
•. $\int \cot u du =$		+ <i>C</i>
•. $\int \sec u du =$		+C
•. $\int \csc u du =$		+ <i>C</i>
•. $\int \frac{1}{\sqrt{a^2 - u^2}} du = $	+ <i>C</i>	
$\bullet. \int \frac{1}{a^2 + u^2} du = _$	+ <i>C</i>	
$\bullet. \int \frac{1}{u\sqrt{u^2 - a^2}} du = _$		

Integration from Calculus II

- •. Partial Fraction Decomposition. Let's integrate $y = \frac{f(x)}{g(x)}$, where f and g are polynomials, by 1st finding its PDF.
 - If [degree of f] \geq [degree of g], then one must first do
 - If [degree of f] < [degree of g], then first factor y = g(x) into factors px + q and irreducible factors $ax^2 + bx + c$ (to be sure it's irreducible, you need).
 - Next, collect up like terms and follow the following rules.
 - **Rule 1**: For each factor of the form $(px+q)^m$ where $m \ge 1$, the decomposition of $y = \frac{f(x)}{g(x)}$ contains a sum of partial fractions of the form, where each A_i is a real number,

Rule 2: For each factor of the form $(ax^2 + bx + c)^n$ where $n \ge 1$, the decomposition of $y = \frac{f(x)}{g(x)}$ contains a sum of partial fractions of the form, where the A_i 's and B_i 's are real number,

•. Integration by parts formula: $\int u \, dv =$

- •. Trig. Substitution. (Recall that the *integrand* is the function you are integrating.) Here, a is a constant and a > 0.
 - if the integrand involves $a^2 u^2$, then one makes the substitution u =______.
 - if the integrand involves $a^2 + u^2$, then one makes the substitution u =______.
 - if the integrand involves $u^2 a^2$, then one makes the substitution u =

Sequences

_____.

- •. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Complete the below sentences.
 - The limit of $\{a_n\}_{n=1}^{\infty}$ is the real number L provided for each $\epsilon > 0$ there exists a natural number N so that if the natural number n satisfies ____ > ___ then ____ < ___.
 - If the limit of $\{a_n\}_{n=1}^{\infty}$ is $L \in \mathbb{R}$, then we denote this by _____.
 - $\{a_n\}_{n=1}^{\infty}$ converges provided _
 - $\{a_n\}_{n=1}^{\infty}$ diverges provided $\{a_n\}_{n=1}^{\infty}$
 - $\{a_n\}_{n=1}^{\infty}$ diverges provided $\lim_{n\to\infty} a_n$
- •. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

 - Can you do similar problems?
- •. Let $-\infty < r < \infty$. (Needed for Geometric Series. Warning, don't confuse sequences with series.)
 - If |r| < 1, then $\lim_{n \to \infty} r^n =$ • If r = 1, then $\lim_{n \to \infty} r^n =$ • If r > 1, then $\lim_{n \to \infty} r^n =$ • If r = -1, then $\lim_{n \to \infty} r^n =$ • If r < -1, then $\lim_{n \to \infty} r^n =$

Series

- ▶. In this section, all series \sum are understood to be $\sum_{i=1}^{\infty}$, unless otherwise indicated.
- •. For a formal <u>series</u> $\sum_{n=1}^{\infty} a_n$, where each $a_n \in \mathbb{R}$, consider the corresponding <u>sequence</u> $\{s_N\}_{N=1}^{\infty}$ of partial sums, so $s_N = S \sum_{n=1}^{N} a_n$. Then the formal series $\sum a_n$
 - converges if and only if
 - converges to $L \in \mathbb{R}$ if and only if
 - diverges if and only if _____

Now assume, furthermore, that $a_n \ge 0$ for each n. Then the sequence $\{s_N\}_{N=1}^{\infty}$ of partial sums either • is bounded above (by some finite number), in which case the series $\sum a_n$

or

• is not bounded above (by some finite number), in which case the series $\sum a_n$

•. The n^{th} -term test for an arbitrary series $\sum a_n$. If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$

- •. Fix $r \in \mathbb{R}$. For $N \ge 17$, let $s_N = \sum_{n=17}^N r^n$ (Note the sum starts at 17). Then, for N > 17,
 - $s_N =$ ______ (your answer can have ...'s but not a \sum sign) $r s_N =$ ______ (your answer can have ...'s but not a \sum sign) $(1-r) s_N =$ ______ (your answer should have neither ...'s nor a \sum sign)

 - and if $r \neq 1$, then $s_N =$ _____ (your answer should have neither ...'s nor a \sum sign)

•. Geometric Series where $-\infty < r < \infty$. The series $\sum r^n$ (hint: look at the previous questions):

- converges if and only if |r|
- diverges if and only if |r|

•. Integral Test for a positive-termed series $\sum a_n$ where $a_n \ge 0$. Let $f: [1, \infty) \to \mathbb{R}$ be so that $a_n = f($ for each $n \in \mathbb{N}$ and y = f(x) is a function. Then we have the following.

(1) For each N > 2,

$$\sum_{n=1}^{n} a_n \leq \int_{x=1}^{x=N} f(x) dx \leq \sum_{n=1}^{n} a_n .$$

$$(1)$$

Fill in, as so to give the best estimate one can, each of the 4 boxes with: a number, N, N-1, or N+1. Hint. Approximate (below and above) the $\int_1^N f(x) dx$ by the area of N-1 Riemann rectangles, each of base length $\Delta x = 1$.

(2) From the bounds in (1), we see that $\sum a_n$ converges if and only if converges. (3) Now let $\sum a_n$ converge. We want to approximate the infinite sum $\sum_{n=1}^{\infty} a_n$ by the finite sum $\sum_{n=1}^{N} a_n$ within an error (i.e., remainder) of R_N . To figure out how good this approximation is, define R_N as below and get a good (as one can) lower and upper approximation of R_N , again using Reimann sums. Fill in the 3 boxes with: a number, N, N-1, or N+1.

- •. *p*-series where $0 . The series <math>\sum \frac{1}{n^p}$
 - converges if and only if p .
 - diverges if and only if p
- This can be shown by using the ______ test and comparing $\sum \frac{1}{n^p}$ to (the easy to compute) $\int_{x=1}^{\infty} dx$.
- •. Comparison Test for a positive-termed series $\sum a_n$ where $a_n \ge 0$. (Fill in the blanks with a_n and/or b_n .)
 - If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and Σ converge, then Σ converge. • If $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$ and Σ diverge, then Σ diverge.

Hint: sing the song to yourself.

- •. Limit Comparison Test for a positive-termed series $\sum a_n$ where $a_n \ge 0$. Let $b_n > 0$ and $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. If $\langle L <$, then $\sum a_n$ converges if and only if $\langle L <$.
- •. Ratio and Root Tests for arbitrary-termed series $\sum a_n$ with $-\infty < a_n < \infty$. Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{or} \quad \rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

- If ρ then $\sum a_n$ converges absolutely.
- If ρ then $\sum a_n$ diverges.
- If ρ then the test is inconclusive (in other words, the test fails).

•. Alternating Series Test (AST) & Alternating Series Estimation Theorem (ASET).

Consider an alternating series $\sum (-1)^n u_n$ where $u_n > 0$ for each $n \in \mathbb{N}$.

• u_n | u_{n+1} for each $n \in \mathbb{N}$

•
$$\lim_{n\to\infty} u_n =$$

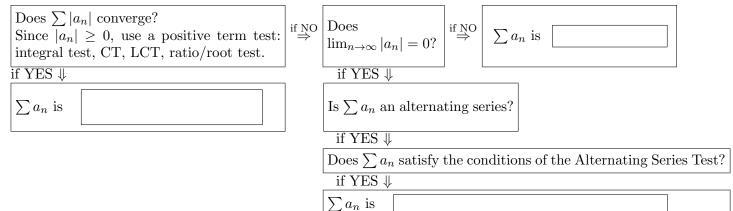
then

- $\sum (-1)^n u_n$
- we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty} (-1)^n u_n$ by the finite sum $\sum_{n=1}^{N} (-1)^n u_n$ and the error (i.e. remainder) satisfies

$$\left|\sum_{n=1}^{\infty} (-1)^n u_n - \sum_{n=1}^{N} (-1)^n u_n\right| \le \boxed{\qquad}.$$

- •. By definition, for an arbitrary series $\sum a_n$, (fill in these 4 boxes with converges or diverges).
 - $\sum a_n$ is absolutely convergent if and only if $\sum |a_n|$
 - $\sum a_n$ is conditionally convergent if and only if $\sum a_n$ and $\sum |a_n|$.

- $\sum a_n$ is divergent if and only if $\sum a_n$
- •. Fill in the 3 blank boxes with absolutely convergent, conditionally convergent, or divergent) on the following FLOW CHART from class used to determine the behavior of a series $\sum_{n=17}^{\infty} a_n$.



Power Series

Condsider a (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (2)$$

with radius of convergence $R \in [0, \infty]$. (Here $x_0 \in \mathbb{R}$ is fixed and $\{a_n\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)

- Fill in the next for boxes with one of the following 4 choices: [a.] is always absolutely convergent (AC)
 [b.] is always conditionally convergent (CC)
 [c.] is always divergent (DIV)
 [d.] can do anything, i.e., there are examples showing that it can be AC, CC, or DIV.
 - (1) For $x = x_0$, the power series h(x) in (2) _____.
 - (2) For $x \in \mathbb{R}$ such that $|x x_0| < R$, the power series h(x) in (2) _____.
 - (3) For $x \in \mathbb{R}$ such that $|x x_0| > R$ the power series h(x) in (2) _____.
 - (4) If R > 0, then for the endpoints $x = x_0 \pm R$, the power series h(x) in (2)
- •. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the power series in (2).
 - (1) The function y = h(x) is <u>always differentiable</u> on the interval [(make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$h'(x) = \sum_{n=1}^{\infty} \tag{3}$$

What can you say about the radius of convergence of the power series in (3)?

(2) The function y = h(x) always has an antiderivative on the interval [(make this interval as large as it can be, but still keeping the statement true). Furthermore, if α and β are in this interval, then

$$\int_{x=\alpha}^{x=\beta} h(x) \, dx = \sum_{n=0}^{\infty} \left[\left. \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta} \right]_{\mathbf{x}=\alpha}^{\mathbf{x}=\beta}$$

Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x_0 . Let $y = P_N(x)$ be the N^{th} -order Taylor polynomial of y = f(x) about x_0 . Let $y = R_N(x)$ be the N^{th} -order Taylor remainder of y = f(x) about x_0 . Let $y = P_{\infty}(x)$ be the Taylor series of y = f(x) about x_0 . Let c_n be the n^{th} Taylor coefficient of y = f(x) about x_0 .

a. The formula for c_n is

$$c_n =$$

b. In open form (i.e., with \ldots and without a \sum -sign)

$$P_N(x) =$$

 ${\bf c.}$ In closed form (i.e., with a $\sum\text{-sign}$ and without $\ \ldots \)$

$$P_N(x) =$$

d. In open form (i.e., with \ldots and without a \sum -sign)

$$P_{\infty}(x) =$$

e. In closed form (i.e., with a \sum -sign and without \ldots)

$$P_{\infty}(x) =$$

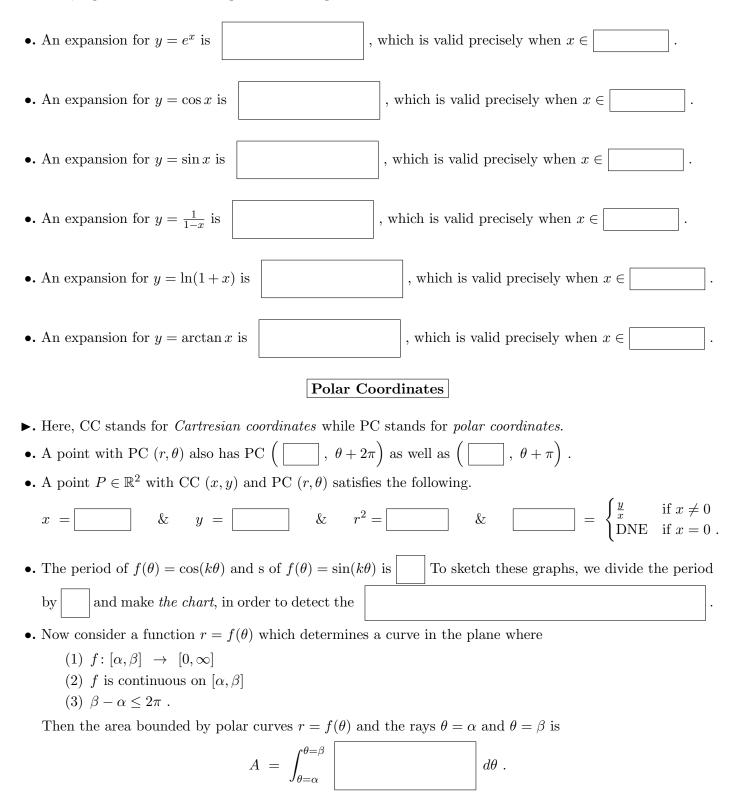
f. We know that $f(x) = P_N(x) + R_N(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$R_N(x) =$	for some c between	and	

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_0 =$

Commonly Used Taylor Series

▶. Here, *expansion* refers to the power series expansion that is the Maclaurin series.



Area and Volume of Revolutions

Let's start with some region R in the (2 dimensional) xy-plane and revolve R around an axis of revolution to generate a (3 dimensional) solid of revolution S. Next we want to find the area of R as well as the volume of S.

- In parts a, fill in the boxes with: x or y. • In parts b, c, and d, fill in the boxes with a formula involving some of: $2, \pi$, radius , base , radius $_{
 m big}$, radius $_{
 m little}$, average radius , height , and/or thickness . ▶. Area via Riemann Sums. Let's find the area of R by forming typical rectangles. **a.** We first partition either the -axis or the -axis. \Box . Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle. **b.** If we partition the z-axis, where z is either x or y, the $\Delta z = |$ of a typical rectangle. **c.** The area of a typical rectangle is ▶. Disk/Washer Method. Let's find the volume of the solid of revolution S using the disk/washer method. **a.** If the axis of revolution is: • the x-axis, or parallel to the x-axis, then we partition the -axis. • the y-axis, or parallel to the y-axis, then we partition the -axis. : Next, using the partition, we form typical disk/washer's. Then we find the volume of each typical disk/washer. **b.** If we partition the z-axis, where z is either x or y, the $\Delta z =$ of a tyical disk/washer. **c.** If we use the **disk method**, then the volume of a typical disk is: **d.** If we use the **washer method**, then the volume of a typical washer is: ▶. Shell Method. Let's find the volume of this solid of revolution S using the shell method. **a.** If the axis of revolution is: • the x-axis, or parallel to the x-axis, then we partition the -axis.
 - the *y*-axis, or parallel to the *y*-axis, then we partition the
- \Box . Next, using the partition, we form typical shells. Then we find the volume of each typical shell.
- **b.** If we partition the z-axis, where z is either x or y, the $\Delta z = |$ of a typical shell.

-axis.

 ${\bf c.}$ The volume of a typical shell is: