set-up

Throughout this handout, there is the set-up (i.e. notation).

The interval I is centered at 0 and of radius R > 0, so I = (-R, R). Let

- $h: I \to \mathbb{R}$ be any function (naturally, from I into \mathbb{R})
- $g: I \to \mathbb{R}$ be any <u>differentiable</u> function
- $f: I \to \mathbb{R}$ be any infinitely differentiable function (i.e. $f^{(n)}(x)$ exists for each $x \in I$ and $n \in \mathbb{N}$)
- $P_N: I \to \mathbb{R}$ be N^{th} -order Maclaurin Polyominal of f for each $N \in \mathbb{N}_0^{-1}$, so

$$P_N(x) = \sum_{n=0}^{N} c_n x^n$$
 where $c_n = \frac{f^{(n)}(0)}{n!}$. (1)

Definition 1. even/odd function (what do their graphs look like?)

- (1) h is an even function $\iff h(-x) = h(x)$ for each $x \in I$.
- (2) h is an odd function $\iff h(-x) = -h(x)$ for each $x \in I$.

Fact 2. These are easy to show.

- (1) Examples of even functions: $y = \cos x$, y = 17, $y = x^2$, $y = x^4$, $y = x^{\text{any even integer}}$, a constant times an even function, the sum of even functions.
- (2) Examples of odd functions: $y = \sin x$, $y = x^1$, $y = x^3$, $y = x^{\text{any odd integer}}$, a constant times an odd function, the sum of odd functions.
- (3) A polynomial y = ∑_{n=0}^N c_nxⁿ is
 (a) an even function ⇔ c_n = 0 for the odd n ∈ N₀ ⇔ ² it contains only even powers.
 (b) an odd function ⇔ c_n = 0 for the even n ∈ N₀ ⇔ ³ it contains only odd powers.
- (4) A function can be neither even nor odd, e.g. y = x 1.
- (5) If h is an odd function, then h(0) = 0.⁴

Fact 3. even/odd and derivatives (think of the graphs and examples)

- (1) If g is an even function, then g' is an odd function.
- (2) If g is an odd function, then g' is an even function.

Proof. Let $g: I \to \mathbb{R}$ be even. Then for each $x \in I$,

$$g'(x) = \lim_{t \to 0} \frac{g(x+t) - g(x)}{t} \stackrel{g \text{ is even}}{=} \lim_{t \to 0} \frac{g(-x-t) - g(-x)}{t}$$

and letting $\tilde{t} = -t$, and so $t = -\tilde{t}$ and noting that $-\tilde{t} \to 0$ if and only if $\tilde{t} \to 0$,

$$= \lim_{-\tilde{t}\to 0} \frac{g\left(-x+\tilde{t}\right)-g\left(-x\right)}{-\tilde{t}} = -\lim_{\tilde{t}\to 0} \frac{g\left(-x+\tilde{t}\right)-g\left(-x\right)}{\tilde{t}} = -g'\left(-x\right) \ .$$

So g' is odd. So, if g is even, then g' is odd. So part (1) holds.

Similarly, part (2) holds (i.e., if g is odd, then g' is even).

Now let's apply these simple facts to Maclaurin polynomials.

¹Recal, $\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, \dots\}.$

²just loosely speaking

³just loosely speaking

⁴Since if h is an odd function, then h(0) = -h(-0) and so h(0) = -h(0).

Fact 4. even/odd and Maclaurin Polynomials

(1) Let f be an even function. Then, for each odd integer $n \in \mathbb{N}_0$,

- (a) $f^{(n)}$ is an odd function
- (b) $f^{(n)}(0) = 0$
- (c) $c_n = 0$.

So each of f's Maclaurin polynomials $\{y = P_N(x)\}_{n=0}^{\infty}$ contains only even powers. (2) Let f be an odd function. Then, for each even integer $n \in \mathbb{N}_0$,

- (a) $f^{(n)}$ is an odd function
- (b) $f^{(n)}(0) = 0$
- (c) $c_n = 0$.

So each of f's Maclaurin polynonials $\{y = P_N(x)\}_{n=0}^{\infty}$ contains only odd powers.

Proof. Consider an even f. Then by Fact ??, we have the following implications.

$$f \text{ is even } \implies f^{(1)} \text{ is odd } \implies f^{(2)} \text{ is even } \implies f^{(3)} \text{ is odd } \implies f^{(4)} \text{ is even } \implies \cdots$$

So part (1a) holds.

Now consider an odd f. We get the following implications.

 $f^{(0)} \text{ is odd} \implies f^{(1)} \text{ is even} \implies f^{(2)} \text{ is odd} \implies f^{(3)} \text{ is even} \implies f^{(4)} \text{ is odd} \implies \cdots$

So part (2a) holds.

In both parts (1) and (2):

- parts (b) follows from Fact ?? part (5)
- parts (c) follows from the definition of c_n , which is in equation (??)
- the closing comment about the Maclaurin polynomials P_N 's follow from Fact ?? part (3).

Now let's see what can be said if the Maclaurin polynomials $\{P_{\mathbb{N}}\}_{N=0}^{\infty}$ converge to f.

Fact 5. even/odd and Maclaurin Series

Consider now the case that the Maclaurin polynomials $\{P_N\}_{N=0}^{\infty}$ converge to f, i.e., for each point $x \in I$,

$$\lim_{N \to \infty} P_N(x) = f(x) .$$
 (2)

(Note the above limit is a limit of the sequence $\{P_N(x)\}_{N=0}^{\infty}$ of real numbers.) Then we say that the Maclaurin series

$$P_{\infty}(x) = \sum_{n=0}^{\infty} c_n x^n$$
, where $c_n = \frac{f^{(n)}(0)}{n!}$,

converges to f.

- (1) If $y = P_{\infty}(x)$ contains only even powers, then f is an even function.
- (2) If $y = P_{\infty}(x)$ contains only odd powers, then f is an odd function.

Proof. Let the Maclaurin series P_{∞} converge to f. Assume that P_{∞} contains only even powers. Then each Maclaurin polynomial P_N contains only even powers, and so, by Fact ?? part(3), is an even function. So

$$f(x) \stackrel{\text{by (??)}}{=} \lim_{N \to \infty} P_N(x) \stackrel{P_N \text{ is even}}{=} \lim_{N \to \infty} P_N(-x) \stackrel{\text{by (??)}}{=} f(-x) .$$

So f is an even function. So part (1) holds. Part (2) is shown similarly.

Now, all this should help you remember the Commonly Used Series.