Even/Odd-ness of Maclaurin Polynominals

set-up

Throughout this handout, there is the set-up (i.e. notation).
The interval I is centered at 0 and of radius $R>0$, so $I=(-R, R)$. Let

- $h: I \rightarrow \mathbb{R}$ be any function (naturally, from I into \mathbb{R})
- $g: I \rightarrow \mathbb{R}$ be any differentiable function
- $f: I \rightarrow \mathbb{R}$ be any infinitely differentiable function (i.e. $f^{(n)}(x)$ exists for each $x \in I$ and $n \in \mathbb{N}$)
- $P_{N}: I \rightarrow \mathbb{R}$ be $N^{\text {th }}$-order Maclaurin Polyominal of f for each $N \in \mathbb{N}_{0}{ }^{1}$, so

$$
\begin{equation*}
P_{N}(x)=\sum_{n=0}^{N} c_{n} x^{n} \quad \text { where } \quad c_{n}=\frac{f^{(n)}(0)}{n!} . \tag{1}
\end{equation*}
$$

Definition 1. even/odd function (what do their graphs look like?)
(1) h is an even function $\Longleftrightarrow h(-x)=h(x)$ for each $x \in I$.
(2) h is an odd function $\Longleftrightarrow h(-x)=-h(x)$ for each $x \in I$.

Fact 2. These are easy to show.
(1) Examples of even functions: $y=\cos x, y=17, y=x^{2}, y=x^{4}, y=x^{\text {any even integer }}$, a constant times an even function, the sum of even functions.
(2) Examples of odd functions: $y=\sin x, y=x^{1}, y=x^{3}, y=x^{\text {any odd integer }}$, a constant times an odd function, the sum of odd functions.
(3) A polynomial $y=\sum_{n=0}^{N} c_{n} x^{n}$ is
(a) an even function $\Longleftrightarrow c_{n}=0$ for the odd $n \in \mathbb{N}_{0} \Longleftrightarrow{ }^{2}$ it contains only even powers.
(b) an odd function $\Longleftrightarrow c_{n}=0$ for the even $n \in \mathbb{N}_{0} \Longleftrightarrow{ }^{3}$ it contains only odd powers.
(4) A function can be neither even nor odd, e.g. $y=x-1$.
(5) If h is an odd function, then $h(0)=0 .{ }^{4}$

Fact 3. even/odd and derivatives (think of the graphs and examples)
(1) If g is an even function, then g^{\prime} is an odd function.
(2) If g is an odd function, then g^{\prime} is an even function.

Proof. Let $g: I \rightarrow \mathbb{R}$ be even. Then for each $x \in I$,

$$
g^{\prime}(x)=\lim _{t \rightarrow 0} \frac{g(x+t)-g(x)}{t} \stackrel{g \text { is even }}{=} \lim _{t \rightarrow 0} \frac{g(-x-t)-g(-x)}{t}
$$

and letting $\tilde{t}=-t$, and so $t=-\tilde{t}$ and noting that $-\tilde{t} \rightarrow 0$ if and only if $\tilde{t} \rightarrow 0$,

$$
=\lim _{-\tilde{t} \rightarrow 0} \frac{g(-x+\tilde{t})-g(-x)}{-\tilde{t}}=-\lim _{\tilde{t} \rightarrow 0} \frac{g(-x+\tilde{t})-g(-x)}{\tilde{t}}=-g^{\prime}(-x) .
$$

So g^{\prime} is odd. So, if g is even, then g^{\prime} is odd. So part (1) holds.
Similarly, part (2) holds (i.e., if g is odd, then g^{\prime} is even).
Now let's apply these simple facts to Maclaurin polynomials.

[^0]Fact 4. even/odd and Maclaurin Polynomials
(1) Let f be an even function. Then, for each odd integer $n \in \mathbb{N}_{0}$,
(a) $f^{(n)}$ is an odd function
(b) $f^{(n)}(0)=0$
(c) $c_{n}=0$.

So each of f 's Maclaurin polynonials $\left\{y=P_{N}(x)\right\}_{n=0}^{\infty}$ contains only even powers.
(2) Let f be an odd function. Then, for each even integer $n \in \mathbb{N}_{0}$,
(a) $f^{(n)}$ is an odd function
(b) $f^{(n)}(0)=0$
(c) $c_{n}=0$.

So each of f 's Maclaurin polynonials $\left\{y=P_{N}(x)\right\}_{n=0}^{\infty}$ contains only odd powers.
Proof. Consider an even f. Then by Fact ??, we have the following implications.
f is even $\Longrightarrow f^{(1)}$ is odd $\Longrightarrow f^{(2)}$ is even $\Longrightarrow f^{(3)}$ is odd $\Longrightarrow f^{(4)}$ is even $\Longrightarrow \cdots$.
So part (1a) holds.
Now consider an odd f. We get the following implications.

$$
f^{(0)} \text { is odd } \Longrightarrow f^{(1)} \text { is even } \Longrightarrow f^{(2)} \text { is odd } \Longrightarrow f^{(3)} \text { is even } \Longrightarrow f^{(4)} \text { is odd } \Longrightarrow \cdots .
$$

So part (2a) holds.
In both parts (1) and (2):

- parts (b) follows from Fact ?? part (5)
- parts (c) follows from the definition of c_{n}, which is in equation (??)
- the closing comment about the Maclaurin polynomials P_{N} 's follow from Fact ?? part (3).

Now let's see what can be said if the Maclaurin polynomials $\left\{P_{\mathbb{N}}\right\}_{N=0}^{\infty}$ converge to f.
Fact 5. even/odd and Maclaurin Series
Consider now the case that the Maclaurin polynomials $\left\{P_{N}\right\}_{N=0}^{\infty}$ converge to f, i.e., for each point $x \in I$,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} P_{N}(x)=f(x) \tag{2}
\end{equation*}
$$

(Note the above limit is a limit of the sequence $\left\{P_{N}(x)\right\}_{N=0}^{\infty}$ of real numbers.) Then we say that the Maclaurin series

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \quad, \text { where } c_{n}=\frac{f^{(n)}(0)}{n!}
$$

converges to f.
(1) If $y=P_{\infty}(x)$ contains only even powers, then f is an even function.
(2) If $y=P_{\infty}(x)$ contains only odd powers, then f is an odd function.

Proof. Let the Maclaurin series P_{∞} converge to f. Assume that P_{∞} contains only even powers. Then each Maclaurin polynomial P_{N} contains only even powers, and so, by Fact ?? part(3), is an even function. So

$$
f(x) \stackrel{\text { by (??) }}{=} \lim _{N \rightarrow \infty} P_{N}(x) \stackrel{P_{N}}{ } \stackrel{\text { is even }}{=} \lim _{N \rightarrow \infty} P_{N}(-x) \stackrel{\text { by (??) }}{=} f(-x)
$$

So f is an even function. So part (1) holds. Part (2) is shown similarly.
Now, all this should help you remember the Commonly Used Series.

[^0]: ${ }^{1}$ Recal, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2,3,4, \ldots\}$.
 ${ }^{2}$ just loosely speaking
 $3_{\text {just loosely speaking }}$
 ${ }^{4}$ Since if h is an odd function, then $h(0)=-h(-0)$ and so $h(0)=-h(0)$.

