## Review of some needed Trig. Identities for Integration

-. Your answers should be an angle in RADIANS.

- $\arccos \left(\frac{1}{2}\right)=$ $\qquad$ - $\arccos \left(-\frac{1}{2}\right)=$ $\qquad$
- $\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$
- $\arcsin \left(-\frac{1}{2}\right)=$
- Can you do similar problems?
-. Double-angle formulas. Your answer should involve trig functions of $\theta$, and not of $2 \theta$.

$$
\text { - } \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \quad \bullet \sin (2 \theta)=2 \sin \theta \cos \theta
$$

- Half-angle formulas. Your answer should involve $\cos (2 \theta)$.
- $\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2} \quad \bullet \sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2}$
-. Since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship beween:
- tangent (i.e., tan) and secant (i.e., sec) is $1+\tan ^{2} \theta=\sec ^{2} \theta$
- cotangent (i.e., cot) and cosecant (i.e., csc) is $1+\cot ^{2} \theta=\csc ^{2} \theta$


## Remember Your Calculus I Integration Basics?

-. $\int \frac{d u}{u} \stackrel{u \neq 0}{=} \ln |u| \quad+\mathrm{C}$
-. $\int u^{n} d u \stackrel{n \neq-1}{=} \frac{u^{n+1}}{n+1}+\mathrm{C}$
-. $\int e^{u} d u=\longrightarrow+C$
-. $\int a^{u} d u \stackrel{a \neq 1}{=}=\frac{a^{u}}{\ln a}+\mathrm{C}$
-. $\int \cos u d u=\square+\sin u \quad+C$
-. $\int \sec ^{2} u d u=\square \tan u \quad C$
-. $\int \sec u \tan u d u=\square \sec u \quad C$
-. $\int \sin u d u=-\quad-\cos u \quad+C$
-. $\int \csc ^{2} u d u=-\quad-\cot u \quad+C$
-. $\int \csc u \cot u d u=\square-\csc u \quad+C$
-. $\int \tan u d u=$ $\qquad$ $+C$
-. $\int \cot u d u=$

$$
-\ln |\csc u| \stackrel{o r}{=} \ln |\sin u| \quad+C
$$

- $\int \sec u d u=\frac{\ln |\sec u+\tan u| \stackrel{\text { or }}{=}-\ln |\sec u-\tan u|}{+C}$
- $\int \csc u d u=\quad-\ln |\csc u+\cot u| \stackrel{o r}{=} \ln |\csc u-\cot u| \quad+C$
-. $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u \stackrel{a>0}{=} \sin ^{-1}\left(\frac{u}{a}\right) \quad+C$
-. $\int \frac{1}{a^{2}+u^{2}} d u \stackrel{a \geq 0}{=} \quad \frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right) \quad+C$
- $\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u \stackrel{a>0}{=}$
$\frac{1}{a} \sec ^{-1}\left(\frac{|u|}{a}\right)$


## Integration from Calculus II

- Integration by parts formula: $\int u d v=$

$$
u v-\int v d u
$$

-. To integrate $\frac{f(x)}{g(x)}$, where $f$ and $g$ are polyonomials, $1^{\text {st }}$ find its Partial Fraction Decomposition (PDF).

- If [degree of $f] \geq$ degree of $g$ ], then one must first does long division .
- If $[$ degree of $f]<[$ degree of $g]\langle$ i.e., have strictly bigger bottoms〉 then first factor $y=g(x)$ into:
* linear factors $p x+q$ and
* irreducible quadratic factors $a x^{2}+b x+c$ (to be sure it's irreducible, you need $b^{2}-4 a c<0$ ).
Next, collect up like terms and follow the following rules.
Rule 1: For each factor of the form $(p x+q)^{m}$ where $m \geq 1$, the decomposition of $y=\frac{f(x)}{g(x)}$ contains a sum of $m$ partial fractions of the form, where each $A_{i}$ is a real number,

$$
\frac{A_{1}}{(p x+q)^{1}}+\frac{A_{2}}{(p x+q)^{2}}+\ldots+\frac{A_{m}}{(p x+q)^{m}}
$$

Rule 2: For each factor of the form $\left(a x^{2}+b x+c\right)^{n}$ where $n \geq 1$, the decomposition of $y=\frac{f(x)}{g(x)}$ contains a sum of $n$ partial fractions of the form, where the $A_{i}$ 's and $B_{i}$ 's are real number,

$$
\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)^{1}}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+d \frac{A_{n} x+B_{n}}{\left(a x^{2}+b x+c\right)^{n}}
$$

- Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, $a$ is a constant and $a>0$.
- if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ $\qquad$ a $\sin \theta$ .
- if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ $\qquad$ .
- if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ $\qquad$ $a \sec \theta$ .


## Improper Integrals

0. Fill-in-the boxes. Below, $a, b, c \in \mathbb{R}$ with $a<c<b$.
-. If $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{0}^{\infty} f(x) d x$ by

$$
\int_{0}^{\infty} f(x) d x=\square \lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x
$$

-. If $f:(-\infty, 0] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{-\infty}^{0} f(x) d x$ by

$$
\int_{-\infty}^{0} f(x) d x=\quad \lim _{t \rightarrow-\infty} \int_{t}^{0} f(x) d x
$$

-. If $f:(-\infty, \infty) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{-\infty}^{\infty} f(x) d x$ by

$$
\int_{-\infty}^{\infty} f(x) d x=\quad\left[\lim _{t \rightarrow-\infty} \int_{t}^{0} f(x) d x\right]+\left[\lim _{s \rightarrow \infty} \int_{0}^{s} f(x) d x\right]
$$

-. If $f:(a, b] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\square \lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

-. If $f:[a, b) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\square \lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

-. If $f:[a, c) \cup(c, b] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\left[\lim _{t \rightarrow c^{-}} \int_{a}^{t} f(x) d x\right]+\left[\lim _{s \rightarrow c^{+}} \int_{s}^{b} f(x) d x\right]
$$

- An improper integral as above converges precisely when
each of the limits involves converges to a finite number.
- An improper integral as above diverges precisely when
the improper integral does not converge.
-. An improper integral as above diverges to $\infty$ precisely when
at least one of the involved limits diverges to $\infty$ AND
each of the other involved limits either diverges to $\infty$ or converges to a finite number.
- An improper integral as above diverges to ${ }^{-} \infty$ precisely when
at least one of the involved limits diverges to ${ }^{-} \infty$ AND
each of the other involved limits either diverges to ${ }^{-} \infty$ or converges to a finite number.


## Sequences

-. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Complete the below sentences.

- The limit of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is the real number $L$ provided for each $\epsilon>0$ there exists a natural number $N$ so that if the natural number $n$ satisfies $n>\underline{N}$ then $\left|L-a_{n}\right|<\underline{\epsilon}$.
- If the limit of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is $L \in \mathbb{R}$, then we denote this by $\quad \lim _{n \rightarrow \infty} a_{n}=L$
- $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges provided there exists a real number $L$ so that $\lim _{n \rightarrow \infty} a_{n}=L$
- $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges provided $\left\{a_{n}\right\}_{n=1}^{\infty}$ $\qquad$ .
-. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)
- $\lim _{n \rightarrow \infty} \frac{5 n^{17}+6 n^{2}+1}{7 n^{18}+9 n^{3}+5}=\xrightarrow{0}$
- $\lim _{n \rightarrow \infty} \frac{36 n^{17}-6 n^{2}-1}{4 n^{17}+9 n^{3}+5}=\quad \frac{36}{4}$ or 9
- $\lim _{n \rightarrow \infty} \frac{-5 n^{18}+6 n^{2}+1}{7 n^{17}+9 n^{3}+5}=\underline{\text { DNE or }-\infty}$
- $\lim _{n \rightarrow \infty} \sqrt{\frac{36 n^{17}-6 n^{2}-1}{4 n^{17}+9 n^{3}+5}}=\sqrt{\frac{36}{4}}$ or 3
- Can you do similar problems?
-. Commonly Occurring Limits 〈Thomas Book §10.1, Theorem 5 page 578〉

| (1) $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=$ | 0 |  |
| :---: | :---: | :---: |
| (2) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=$ | 1 |  |
| (3) $\lim _{n \rightarrow \infty} c^{1 / n}=$ | 1 | $(c>0)$ |
| (4) $\lim _{n \rightarrow \infty} c^{n}=$ | 0 | $(\|c\|<1)$ |
| (5) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=$ | $e^{c}$ | $(c \in \mathbb{R})$ |
| (6) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=$ | 0 | $(c \in \mathbb{R})$ |

-. Let $-\infty<r<\infty$. (Needed for Geometric Series. Warning, don't confuse sequences with series.)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=\square 0$.
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}=\square 1$.
- If $r>1$, then $\lim _{n \rightarrow \infty} r^{n}=\square$ DNE (tends to $\infty$ )
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}=$ DNE (oscillates between 1 and -1 )
- If $r<-1$, then $\lim _{n \rightarrow \infty} r^{n}=\operatorname{DNE}\left(r^{2 n} \rightarrow \infty\right.$ while $\left.r^{2 n+1} \rightarrow-\infty\right)$.


## Series

- In this section, all series $\sum$ are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.
-. For a formal series $\sum_{n=1}^{\infty} a_{n}$, where each $a_{n} \in \mathbb{R}$, consider the corresponding sequence $\left\{s_{N}\right\}_{N=1}^{\infty}$ of partial sums, so $s_{N}=\sum_{n=1}^{N} a_{n}$. Then the formal series $\sum a_{n}$ :
- converges if and only if the $\lim _{N \rightarrow \infty} s_{N}$ exists in $\mathbb{R}$
- converges to $L \in \mathbb{R}$ if and only if $\quad$ the $\lim _{N \rightarrow \infty} s_{N}$ exists in $\mathbb{R}$ and equals $L \in \mathbb{R}$
- diverges if and only if $\quad$ the $\lim _{N \rightarrow \infty} s_{N}$ does not exist in $\mathbb{R}$ $\qquad$
Now assume, furthermore, that $a_{n} \geq 0$ for each $n$. Then the sequence $\left\{s_{N}\right\}_{N=1}^{\infty}$ of partial sums either
- in bounded above (by some finite number), in which case the series $\sum a_{n}$ converges
or $\bullet \underline{\text { is not }}$ bounded above (by some finite number), in which case the series $\sum a_{n}$ diverges to ${ }^{+}$.
-. State the $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (which includes the case that $\lim _{n \rightarrow \infty} a_{n}$ does not exist), then $\sum a_{n}$ diverges .
-. Fix $r \in \mathbb{R}$. For $N \geq 17$, let $s_{N}=\sum_{\mathbf{n}=1 \mathbf{1 7}}^{N} r^{n}$ (Note the sum starts at 17). Then, for $N>17$,
- $s_{N}=\frac{r^{17}+r^{18}+\ldots+r^{N}}{r^{18}+\ldots r^{N}+r^{N+1}}$ (your answer can have $\ldots$ 's but not a $\sum$ sign)
- $r s_{N}=\frac{r^{18}+\ldots+r^{N}+r^{N+1}}{(y)}$ (your answer can have ...'s but not a $\sum$ sign)
- $(1-r) s_{N}=\ldots \quad r^{17}-r^{N+1} \quad$ (your answer should have neither ...'s nor a $\sum$ sign)
- and if $r \neq 1, \overline{\text { then } s_{N}=\frac{r^{17}-r^{N+1}}{1-r}} \quad$ (your answer should have neither ...'s nor a $\sum$ sign)
-. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$ (hint: look at the previous questions):
- converges if and only if
- diverges if and only if

| $\|r\|<1$ |
| :---: |
| $\|r\| \geq 1$ |

-. $p$-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$

- converges if and only if
- diverges if and only if

This can be shown by using the integral test 〈here, name the test one uses〉 and comparing (the hard to compute series) $\sum \frac{1}{n^{p}}$ to (the easy to compute improper integral) $\int_{x=1}^{\infty} \xlongequal{\frac{1}{x^{p}}} d x$.

## Tests for Positive-Termed Series

(so for $\sum a_{n}$ where $a_{n} \geq 0$ )
0.1. State the Integral Test with Remainder Estimate for a positive-termed series $\sum a_{n}$.

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
(1) $a_{n}=f(n)$ for each $n \in \mathbb{N}$
(2) $f$ is a
(3) $f$ is a

| positive |
| :---: |
| continuous |
| decreasing (nonincreasing is also ok) | function

(4) $f$ is a $\square$ function function.

Then

- $\sum a_{n}$ converges if and only if $\quad \int_{x=1}^{x=\infty} f(x) d x$ converges.
- and if $\sum a_{n}$ converges, then

$$
0 \leq\left(\sum_{k=1}^{\infty} a_{k}\right)-\left(\sum_{k=1}^{N} a_{k}\right) \leq \square \int_{x=N}^{x=\infty} f(x) d x
$$

0.2. State the Direct Comparison Test for a positive-termed series $\sum a_{n}$.

- If $\begin{gathered}0 \leq a_{n} \leq c_{n} \\ \left.\text { (only } a_{n} \leq c_{n} \text { is also ok b/c given } a_{n} \geq 0\right)\end{gathered}$ when $n \geq 17$ and $\sum c_{n}$ converges , then $\sum a_{n}$ converges.
- If $\begin{gathered}0 \leq d_{n} \leq a_{n} \\ \text { (need } 0 \leq d_{n} \text { part here) }\end{gathered}$ when $n \geq 17$ and $\sum d_{n}$ diverges , then $\sum a_{n}$ diverges.

Hint: sing the song to yourself.
0.3. State the Limit Comparison Test for a positive-termed series $\sum a_{n}$.

Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

- If $0<L<\infty$, then $\quad\left[\sum b_{n}\right.$ converges $\Longleftrightarrow \sum a_{n}$ converges ]
- If $L=0$, then
- If $L=\infty$, then
$\left[\sum b_{n}\right.$ diverges $\Longrightarrow \sum a_{n}$ diverges $]$.

Goal: cleverly pick positive $b_{n}$ 's so that you know what $\sum b_{n}$ does (converges or diverges) and the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n}$ converges.
0.4. Helpful Intuition Fill in the 3 boxes using: $e^{x}, \ln x, x^{q}$. Use each once, and only once.

Consider a positive power $q>0$. There is (some big number) $N_{q}>0$ so that if $x \geq N_{q}$ then


## Tests for Arbitrary-Termed Series

(so for $\sum a_{n}$ where $-\infty<a_{n}<\infty$ )
0.5. By definition, for an arbitrary series $\sum a_{n}$, (fill in these 3 boxes with convergent or divergent).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ is $\quad$ convergent .
- $\sum a_{n}$ is conditionally convergent if and only if
$\sum a_{n}$ is convergent and $\sum\left|a_{n}\right|$ is $\quad$ divergent
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ is divergent.
0.6. State the Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$. Let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad \text { or } \quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}} .
$$

- If $\quad \rho<1$ then $\sum a_{n}$ converges absolutely.
- If $\quad \rho>1$ then $\sum a_{n}$ diverges.
- If $\quad \rho=1$ then the test is inconclusive.
0.7. State the Alternating Series Test (AST) \& Alternating Series Estimation Theorem. Let
(1) $u_{n} \geq 0$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=0$
(3) $u_{n}>\left(\right.$ also ok $\geq$ ) $\quad u_{n+1}$ for each $n \in \mathbb{N}$.

Then

- the series $\sum(-1)^{n} u_{n}$ converges. (also ok: $\sum(-1)^{n+1} u_{n}$ converges or $\sum(-1)^{n-1} u_{n}$ converges)
- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ by the finite sum $\sum_{k=1}^{N}(-1)^{k} u_{k}$ and the error (i.e. remainder) satisfies

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} u_{k}-\sum_{k=1}^{N}(-1)^{k} u_{k}\right| \leq u_{N+1}
$$

## Power Series

Condsider a (formal) power series

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1.1}
\end{equation*}
$$

with radius of convergence $R \in[0, \infty]$.
(Here $x_{0} \in \mathbb{R}$ is fixed and $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)
Without any other further information on $\left\{a_{n}\right\}_{n=0}^{\infty}$, answer the following questions.
-. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,
AC stands for: always absolutely convergent
CC stands for: always conditionally convergent
DIVG stands for: is always divergent
anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.
(1) At the center $x=x_{0}$, the power series in (1.1) $\square$
(2) For $x \in \mathbb{R}$ such that $\left|x-x_{0}\right|<R$, the power series in (1.1)
(3) For $x \in \mathbb{R}$ such that $\left|x-x_{0}\right|>R$, the power series in (1.1)

| AC |
| :---: |
| DIVG |

(4) If $R>0$, then for the endpoints $x=x_{0} \pm R$, the power series in 1.1)
anything
-. For this part, fill in the 7 boxes.
Let $R>0$ and consider the function $y=h(x)$ defined by the power series in 1.1).
(1) The function $y=h(x)$ is always differentiable on the interval $\quad\left(x_{0}-R, x_{0}+R\right)$ (make this interval as large as it can be, but still keeping the statement true).
Furthermore, if $x$ is in this interval, then

$$
\begin{equation*}
h^{\prime}(x)=\sum_{n=\boxed{1}}^{\infty} n a_{n}\left(x-x_{0}\right)^{n-1} \tag{1.2}
\end{equation*}
$$

What can you say about the radius of convergence of the power series in 1.2$)$ ?
The power series in (1.2) has the same raduis of convergence as the power series in (1.1).
(2) The function $y=h(x)$ always has an antiderivative on the interval $\left(x_{0}-R, x_{0}+R\right)$ (make this interval as large as it can be, but still keeping the statement true). Futhermore, if $\alpha$ and $\beta$ are in this interval, then

$$
\int_{x=\alpha}^{x=\beta} h(x) d x=\left.\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}\left(x-x_{0}\right)^{n+1}\right|_{\mathbf{x}=\alpha} ^{\mathbf{x}=\beta}
$$

## Taylor/Maclaurin Polynomials and Series

Let $y=f(x)$ be a function with derivatives of all orders in an interval $I$ containing $x_{0}$.
Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about $x_{0}$.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about $x_{0}$.
Let $y=P_{\infty}(x)$ be the Taylor series of $y=f(x)$ about $x_{0}$.
Let $c_{n}$ be the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about $x_{0}$.
a. The formula for $c_{n}$ is

$$
c_{n}=\square \frac{f^{(n)}\left(x_{0}\right)}{n!}
$$

b. In open form (i.e., with $\ldots$ and without a $\sum$-sign)

$$
P_{N}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}
$$

c. In closed form (i.e., with a $\sum$-sign and without ... )

$$
P_{N}(x)=\quad \sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

d. In open form (i.e., with $\ldots$ and without a $\sum$-sign)

$$
P_{\infty}(x)=\quad f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots
$$

e. In closed form (i.e., with a $\sum$-sign and without ... )

$$
P_{\infty}(x)=\quad \sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

f. We know that $f(x)=P_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$
R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!}\left(x-x_{0}\right)^{(N+1)} \quad \text { for some } c \text { between } \square \text { and } x_{0} .
$$

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_{0}=\square 0$.

## Commonly Used Taylor Series

-. Here, expansion refers to the power series expansion that is the Maclaurin series.
-. An expansion for $y=e^{x}$ is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, which is valid precisely when $x \in(-\infty, \infty)$.
-. An expansion for $y=\cos x$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$, which is valid precisely when $x \in(-\infty, \infty)$.

-. An expansion for $y=\sin x$ is | $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$ |
| :---: | :---: | , which is valid precisely when $x \in(-\infty, \infty)$.

-. An expansion for $y=\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^{n}$, which is valid precisely when $x \in \boxed{(-1,1)}$.
-. An expansion for $y=\ln (1+x)$ is $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$, which is valid precisely when $x \in \square(-1,1]$.
-. An expansion for $y=\arctan x$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$, which is valid precisely when $x \in[-1,1]$.

## Parametric Curves

In this part, fill in the 4 boxes. Consider the curve $\mathcal{C}$ parameterized by

$$
\begin{aligned}
x & =x(t) \\
y & =y(t)
\end{aligned}
$$

for $a \leq t \leq b$.

1) Express $\frac{d y}{d x}$ in terms of derivatives with respect to $t$. Answer: $\frac{d y}{d x}=$ $\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
2) The tangent line to $\mathcal{C}$ when $t=t_{0}$ is $y=m x+b$ where $m$ is
$\frac{\frac{d y}{d x} \text { evaluated at } t}{\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}}$
3) The arc length of $\mathcal{C}$, expressed as on integral with respect to $t$, is

$$
\text { Arc Length }=\sqrt{\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}} d t
$$

## Polar Coordinates

-. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.
-. A point with $\mathrm{PC}(r, \theta)$ also has $\mathrm{PC}(\square r, \theta+2 \pi)$ as well as $(\boxed{-r}, \theta+\pi)$.

- A point $P \in \mathbb{R}^{2}$ with $\mathrm{CC}(x, y)$ and $\mathrm{PC}(r, \theta)$ satisfies the following.

$$
x=r \cos \theta \quad \& \quad y=r \sin \theta \quad \& \quad r^{2}=x^{2}+y^{2} \quad \& \quad \square \tan \theta \quad= \begin{cases}\frac{y}{x} & \text { if } x \neq 0 \\ \text { DNE } & \text { if } x=0\end{cases}
$$

-. The period of $f(\theta)=\cos (k \theta)$ and of $f(\theta)=\sin (k \theta)$ is $\frac{2 \pi}{k}$.
To sketch these graphs, we divide the period by 4 and make the chart,
in order to detect the $\quad \mathrm{max} / \mathrm{min} /$ zero's of the function $r=f(\theta)$

- Now consider a sufficiently nice function $r=f(\theta)$ which determines a curve in the plane.

The the area bounded by polar curves $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$ is

$$
\text { Area }=\int_{\theta=\alpha}^{\theta=\beta} \quad \frac{1}{2}[f(\theta)]^{2} \quad d \theta
$$

The arc length of the polar curves $r=f(\theta)$ is

$$
\text { Arc Length }=\int_{\theta=\alpha}^{\theta=\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

