
Review of Basic Concepts

Review of some needed Trig. Identities for Integration

•. Your answers should be an angle in RADIANS.

• arccos( 1
2

) = π
3

• arccos( -1
2

) = 2π
3

• arcsin( 1
2

) = π
6

• arcsin( -1
2

) = -π
6

• Can you do similar problems?

•. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ.

• cos(2θ) = cos2 θ − sin2 θ • sin(2θ) = 2 sin θ cos θ .

•. Half-angle formulas. Your answer should involve cos(2θ).

• cos2(θ) =
1 + cos (2θ)

2
• sin2(θ) =

1− cos (2θ)

2

•. Since cos2 θ + sin2 θ = 1, we know that the corresponding relationship beween:

• tangent (i.e., tan) and secant (i.e., sec) is 1 + tan2 θ = sec2 θ .

• cotangent (i.e., cot) and cosecant (i.e., csc) is 1 + cot2 θ = csc2 θ .

Remember Your Calculus I Integration Basics?

•.
∫

du
u

u6=0
= ln |u| + C

•.
∫
un du

n6=−1
= un+1

n+1
+C

•.
∫
eu du = eu +C

•.
∫
au du

a6=1
= = au

ln a
+ C

•.
∫

cosu du = sinu + C

•.
∫

sec2 u du = tanu +C

•.
∫

secu tanu du = secu +C

•.
∫

sinu du = - cosu + C

•.
∫

csc2 u du = - cotu +C

•.
∫

cscu cotu du = - cscu +C

•.
∫

tanu du = ln |secu| or= - ln |cosu| + C

•.
∫

cotu du = - ln |cscu| or= ln |sinu| + C

•.
∫

secu du = ln |secu+ tanu| or= - ln |secu− tanu| + C

•.
∫

cscu du = - ln |cscu+ cotu| or= ln |cscu− cotu| + C

•.
∫

1√
a2−u2 du

a>0
= sin-1

(
u
a

)
+ C

•.
∫

1
a2+u2

du
a>0
= 1

a
tan-1

(
u
a

)
+ C

•.
∫

1
u
√
u2−a2 du

a>0
= 1

a
sec-1

(
|u|
a

)
+ C
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Review of Basic Concepts

Integration from Calculus II

•. Integration by parts formula:
∫
u dv = uv −

∫
vdu

•. To integrate f(x)
g(x)

, where f and g are polyonomials, 1st find its Partial Fraction Decomposition (PDF).

• If [degree of f ] ≥ [degree of g], then one must first does long division .
• If [degree of f ] < [degree of g] 〈i.e., have strictly bigger bottoms〉 then first factor y = g(x) into:

∗ linear factors px+ q and

∗ irreducible quadratic factors ax2 + bx+ c (to be sure it’s irreducible,

you need b2 − 4ac < 0 ) .

Next, collect up like terms and follow the following rules.

Rule 1: For each factor of the form (px+q)m where m ≥ 1, the decomposition of y = f(x)
g(x)

contains

a sum of m partial fractions of the form, where each Ai is a real number,

A1

(px+ q)1
+

A2

(px+ q)2
+ . . . +

Am
(px+ q)m

.

Rule 2: For each factor of the form (ax2 + bx + c)n where n ≥ 1, the decomposition of y = f(x)
g(x)

contains a sum of n partial fractions of the form, where the Ai’s and Bi’s are real number,

A1x+B1

(ax2 + bx+ c)1
+

A2x+B2

(ax2 + bx+ c)2
+ . . . + d Anx+Bn

(ax2+bx+c)n .

•. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.

• if the integrand involves a2−u2, then one makes the substitution u = a sin θ .
• if the integrand involves a2+u2, then one makes the substitution u = a tan θ .
• if the integrand involves u2−a2, then one makes the substitution u = a sec θ .

Improper Integrals

0. Fill-in-the boxes. Below, a, b, c ∈ R with a < c < b.

•. If f : [0,∞)→ R is continuous, then we define the improper integral

∫ ∞
0

f (x) dx by

∫ ∞
0

f (x) dx = lim
t→∞

∫ t

0

f (x) dx .

•. If f : (−∞, 0]→ R is continuous, then we define the improper integral

∫ 0

−∞
f (x) dx by

∫ 0

−∞
f (x) dx = lim

t→−∞

∫ 0

t

f (x) dx .
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Review of Basic Concepts

•. If f : (−∞,∞)→ R is continuous, then we define the improper integral

∫ ∞
−∞

f (x) dx by

∫ ∞
−∞

f (x) dx =

[
lim
t→−∞

∫ 0

t

f (x) dx

]
+

[
lim
s→∞

∫ s

0

f (x) dx

]
.

•. If f : (a, b]→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx = lim
t→a+

∫ b

t

f (x) dx .

•. If f : [a, b)→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx = lim
t→b−

∫ t

a

f (x) dx .

•. If f : [a, c) ∪ (c, b]→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx =

[
lim
t→c−

∫ t

a

f (x) dx

]
+

[
lim
s→c+

∫ b

s

f (x) dx

]
.

•. An improper integral as above converges precisely when

each of the limits involves converges to a finite number.

•. An improper integral as above diverges precisely when

the improper integral does not converge.

•. An improper integral as above diverges to ∞ precisely when

at least one of the involved limits diverges to ∞ AND
each of the other involved limits

::::::
either diverges to ∞

::
or converges to a finite number.

•. An improper integral as above diverges to –∞ precisely when

at least one of the involved limits diverges to –∞ AND
each of the other involved limits

::::::
either diverges to –∞

::
or converges to a finite number.
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Review of Basic Concepts

Sequences

•. Let {an}∞n=1 be a sequence of real numbers. Complete the below sentences.

• The limit of {an}∞n=1 is the real number L provided for each ε > 0 there exists a natural

number N so that if the natural number n satisfies n > N then |L− an| < ε .

• If the limit of {an}∞n=1 is L ∈ R, then we denote this by limn→∞ an = L .

• {an}∞n=1 converges provided there exists a real number L so that limn→∞ an = L .

• {an}∞n=1 diverges provided {an}∞n=1 does not converge .

•. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

• lim
n→∞

5n17 + 6n2 + 1

7n18 + 9n3 + 5
= 0 • lim

n→∞

36n17 − 6n2 − 1

4n17 + 9n3 + 5
= 36

4
or 9

• lim
n→∞

-5n18 + 6n2 + 1

7n17 + 9n3 + 5
= DNE or -∞ • lim

n→∞

√
36n17 − 6n2 − 1

4n17 + 9n3 + 5
=

√
36
4

or 3

• Can you do similar problems?

•. Commonly Occurring Limits 〈Thomas Book §10.1, Theorem 5 page 578〉

(1) lim
n→∞

lnn

n
= 0

(2) lim
n→∞

n
√
n = 1

(3) lim
n→∞

c1/n = 1 (c > 0)

(4) lim
n→∞

cn = 0 (|c| < 1)

(5) lim
n→∞

(
1 + c

n

)n
= ec (c ∈ R)

(6) lim
n→∞

xn

n!
= 0 (c ∈ R)

•. Let −∞ < r <∞. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

• If |r| < 1, then lim
n→∞

rn = 0 .

• If r = 1, then lim
n→∞

rn = 1 .

• If r > 1, then lim
n→∞

rn = DNE (tends to ∞) .

• If r = -1, then lim
n→∞

rn = DNE (oscillates between 1 and −1) .

• If r < -1, then lim
n→∞

rn = DNE (r2n →∞ while r2n+1 → −∞) .
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Series

I. In this section, all series
∑

are understood to be
∞∑
n=1

, unless otherwise indicated.

•. For a formal series
∑∞

n=1 an, where each an ∈ R, consider the corresponding
:::::::::
sequence {sN}∞N=1 of

partial sums, so sN =
∑N

n=1 an. Then the formal series
∑
an:

• converges if and only if the limN→∞ sN exists in R
• converges to L ∈ R if and only if the limN→∞ sN exists in R and equals L ∈ R
• diverges if and only if the limN→∞ sN does not exist in R .

Now assume, furthermore, that an ≥ 0 for each n. Then the
:::::::::
sequence {sN}∞N=1 of partial sums

either

• is bounded above (by some finite number), in which case the series
∑
an converges

or
• is not bounded above (by some finite number), in which case the series

∑
an diverges to +∞ .

•. State the nth-term test for an arbitrary
:::::
series

∑
an.

If limn→∞ an 6= 0 (which includes the case that limn→∞ an does not exist), then
∑
an diverges .

•. Fix r ∈ R. For N ≥ 17, let sN =
∑N

n=17 rn (Note the sum starts at 17). Then, for N > 17,

• sN = r17 + r18 + . . . + rN (your answer can have . . .’s but not a
∑

sign)

• r sN = r18 + . . . + rN + rN+1
(your answer can have . . .’s but not a

∑
sign)

• (1− r) sN = r17 − rN+1
(your answer should have neither . . .’s nor a

∑
sign)

• and if r 6= 1, then sN = r17 − rN+1

1−r (your answer should have neither . . .’s nor a
∑

sign)

•. Geometric Series where −∞ < r <∞. The series
∑
rn (hint: look at the previous questions):

• converges if and only if |r| < 1

• diverges if and only if |r| ≥ 1 .

•. p-series where 0 < p <∞. The series
∑

1
np

• converges if and only if p > 1 .

• diverges if and only if p ≤ 1 .

This can be shown by using the integral test 〈here, name the test one uses〉 and comparing

(the hard to compute series)
∑

1
np to (the easy to compute improper integral)

∫∞
x=1

1
xp

dx .
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Tests for Positive-Termed Series
(so for

∑
an where an ≥ 0)

0.1. State the Integral Test with Remainder Estimate for a
::::::::
positive-termed series

∑
an.

Let f : [1,∞)→ R be so that

(1) an = f (n) for each n ∈ N

(2) f is a positive function

(3) f is a continuous function

(4) f is a decreasing (nonincreasing is also ok) function.

Then

•
∑
an converges if and only if

∫ x=∞
x=1

f(x) dx converges.

• and if
∑
an converges, then

0 ≤

(
∞∑
k=1

ak

)
−

(
N∑
k=1

ak

)
≤

∫ x=∞

x=N

f(x) dx .

0.2. State the Direct Comparison Test for a
::::::::
positive-termed series

∑
an.

• If
0 ≤ an ≤ cn

(only an ≤ cn is also ok b/c given an ≥ 0)
when n ≥ 17 and

∑
cn converges , then

∑
an converges.

• If
0 ≤ dn ≤ an

(need 0 ≤ dn part here)
when n ≥ 17 and

∑
dn diverges , then

∑
an diverges.

Hint: sing the song to yourself.

0.3. State the Limit Comparison Test for a
::::::::
positive-termed series

∑
an.

Let bn > 0 and L = limn→∞
an
bn

.

• If 0 < L <∞ , then [
∑
bn converges ⇐⇒

∑
an converges ]

• If L = 0 , then [
∑
bn converges =⇒

∑
an converges ] .

• If L =∞ , then [
∑
bn diverges =⇒

∑
an diverges ] .

Goal: cleverly pick positive bn’s so that you know what
∑
bn does (converges or diverges) and the sequence

{
an
bn

}
n
converges.

0.4. Helpful Intuition Fill in the 3 boxes using: ex, ln x, xq. Use each once, and only once.

Consider a positive power q > 0. There is (some big number) Nq > 0 so that if x ≥ Nq then

lnx ≤ xq ≤ ex .
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Tests for Arbitrary-Termed Series
(so for

∑
an where −∞ < an <∞)

0.5. By definition, for an arbitrary series
∑
an, (fill in these 3 boxes with convergent or divergent).

•
∑
an is

:::::::::::
absolutely

::::::::::::
convergent if and only if

∑
|an| is convergent .

•
∑
an is

::::::::::::::
conditionally

:::::::::::
convergent if and only if∑

an is convergent and
∑
|an| is divergent .

•
∑
an is

::::::::::
divergent if and only if

∑
an is divergent.

0.6. State the Ratio and Root Tests for arbitrary-termed series
∑
an with −∞ < an <∞. Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or ρ = lim
n→∞

|an|
1
n .

• If ρ < 1 then
∑
an converges absolutely.

• If ρ > 1 then
∑
an diverges.

• If ρ = 1 then the test is inconclusive.

0.7. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

(1) un ≥ 0 for each n ∈ N

(2) limn→∞ un = 0

(3) un > (also ok ≥) un+1 for each n ∈ N.

Then

• the series
∑

(−1)nun converges. (also ok:
∑

(−1)n+1un converges or
∑

(−1)n−1un converges)

• and we can estimate (i.e., approximate) the infinite sum
∑∞

n=1(−1)nun by the finite sum∑N
k=1(−1)kuk and the error (i.e. remainder) satisfies∣∣∣∣∣

∞∑
k=1

(−1)kuk −
N∑
k=1

(−1)kuk

∣∣∣∣∣ ≤ uN+1 .
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Power Series

Condsider a (formal) power series

h(x) =
∞∑
n=0

an (x− x0)n , (1.1)

with radius of convergence R ∈ [0,∞].

(Here x0 ∈ R is fixed and {an}∞n=0 is a fixed sequence of real numbers.)

Without any other further information on {an}∞n=0, answer the following questions.

•. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,

AC stands for: always absolutely convergent

CC stands for: always conditionally convergent

DIVG stands for: is always divergent

anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.

(1) At the center x = x0, the power series in (1.1) AC .

(2) For x ∈ R such that |x− x0| < R, the power series in (1.1) AC .

(3) For x ∈ R such that |x− x0| > R, the power series in (1.1) DIVG .

(4) IfR > 0, then for the endpoints x = x0±R, the power series in (1.1) anything .

•. For this part, fill in the 7 boxes.

Let R > 0 and consider the function y = h(x) defined by the power series in (1.1).

(1) The function y = h(x) is
:::::::
always

::::::::::::::
differentiable on the interval (x0 −R, x0 +R)

(make this interval as large as it can be, but still keeping the statement true).

Furthermore, if x is in this interval, then

h′(x) =
∞∑

n= 1

n an (x− x0)n−1 . (1.2)

What can you say about the radius of convergence of the power series in (1.2)?

The power series in (1.2) has the same raduis of convergence as the power series in (1.1).

(2) The function y = h(x)
::::::
always

:::::
has

:::
an

:::::::::::::::
antiderivative on the interval (x0 −R, x0 +R)

(make this interval as large as it can be, but still keeping the statement true).

Futhermore, if α and β are in this interval, then∫ x=β

x=α

h(x) dx =
∞∑

n= 0

an
n+ 1

(x− x0)n+1

∣∣∣∣∣
x=β

x=α

.
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Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x0.

Let y = PN(x) be the N th-order Taylor polynomial of y = f(x) about x0.

Let y = RN(x) be the N th-order Taylor remainder of y = f(x) about x0.

Let y = P∞(x) be the Taylor series of y = f(x) about x0.

Let cn be the nth Taylor coefficient of y = f(x) about x0.

a. The formula for cn is

cn = f (n)(x0)

n!

b. In open form (i.e., with . . . and without a
∑

-sign)

PN(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3 + · · ·+ f (N)(x0)

N !
(x− x0)N

c. In closed form (i.e., with a
∑

-sign and without . . . )

PN(x) =
N∑
n=0

f (n)(x0)

n!
(x− x0)n

d. In open form (i.e., with . . . and without a
∑

-sign)

P∞(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n + . . .

e. In closed form (i.e., with a
∑

-sign and without . . . )

P∞(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

f. We know that f(x) = PN(x) +RN(x). Taylor’s BIG Theorem tells us that, for each x ∈ I,

RN(x) =
f (N+1)(c)

(N + 1)!
(x− x0)(N+1) for some c between x and x0 .

g. A Maclaurin series is a Taylor series with the center specifically specified as x0 = 0 .
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Commonly Used Taylor Series

I. Here, expansion refers to the power series expansion that is the Maclaurin series.

•. An expansion for y = ex is

∞∑
n=0

xn

n!
, which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = cosx is

∞∑
n=0

(−1)n
x2n

(2n)!
, which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = sinx is

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, which is valid precisely when x ∈ (−∞,∞) .

•. An expansion for y = 1
1−x is

∞∑
n=0

xn , which is valid precisely when x ∈ (−1, 1) .

•. An expansion for y = ln(1+x) is

∞∑
n=1

(−1)n+1x
n

n
, which is valid precisely when x ∈ (−1, 1] .

•. An expansion for y = arctanx is

∞∑
n=0

(−1)n
x2n+1

2n+ 1
, which is valid precisely when x ∈ [−1, 1] .
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Parametric Curves

In this part, fill in the 4 boxes. Consider the curve C parameterized by

x = x (t)

y = y (t)

for a ≤ t ≤ b.

1) Express
dy

dx
in terms of derivatives with respect to t. Answer:

dy

dx
=

dy

dt
dx

dt

2) The tangent line to C when t = t0 is y = mx+ b where m is
dy

dx
evaluated at t = t0.

3) Express
d2y

dx2
using derivatives with respect to t. Answer:

d2y

dx2
=

d

dt

(
dy

dx

)
dx

dt

4) The arc length of C, expressed as on integral with respect to t, is

Arc Length =
∫ t=b

t=a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Polar Coordinates

I. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

•. A point with PC (r, θ) also has PC
(

r , θ + 2π
)

as well as
(
−r , θ + π

)
.

•. A point P ∈ R2 with CC (x, y) and PC (r, θ) satisfies the following.

x = r cos θ & y = r sin θ & r2 = x2 + y2 & tan θ =

{
y
x

if x 6= 0

DNE if x = 0 .

•. The period of f(θ) = cos(kθ) and of f(θ) = sin(kθ) is 2π
k

.

To sketch these graphs, we divide the period by 4 and make the chart,

in order to detect the max/min/zero’s of the function r = f(θ) .

•. Now consider a sufficiently nice function r = f(θ) which determines a curve in the plane.
The the area bounded by polar curves r = f(θ) and the rays θ = α and θ = β is

Area =

∫ θ=β

θ=α

1
2

[f(θ)]2 dθ .

The arc length of the polar curves r = f(θ) is

Arc Length =

∫ θ=β

θ=α

√
r2 +

(
dr

dθ

)2

dθ .
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