Review of some needed Trig. Identities for Integration

-. Your answers should be an angle in RADIANS.

- $\arccos \left(\frac{1}{2}\right)=$ \qquad - $\arccos \left(-\frac{1}{2}\right)=$ \qquad
- $\arcsin \left(\frac{1}{2}\right)=$
- $\arcsin \left(-\frac{1}{2}\right)=$ \qquad
- Can you do similar problems?
-. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ.
\square - $\sin (2 \theta)=$ \square
- Half-angle formulas. Your answer should involve $\cos (2 \theta)$.

$$
\text { - } \cos ^{2}(\theta)=\square \quad \text { • } \sin ^{2}(\theta)=\square
$$

-. Since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship beween:

- tangent (i.e., tan) and secant (i.e., sec) is \qquad -
- cotangent (i.e., cot) and cosecant (i.e., csc) is \qquad .

Remember Your Calculus I Integration Basics?

- $\int \frac{d u}{u} \stackrel{u \neq 0}{=}$ \qquad
-. $\int u^{n} d u \stackrel{n \neq-1}{=}$ \qquad + C
-. $\int e^{u} d u=$ \qquad $+\mathrm{C}$
- $\int a^{u} d u \stackrel{a \neq 1}{=}=$ \qquad
-. $\int \cos u d u=$ \qquad $+\mathrm{C}$
-. $\int \sec ^{2} u d u=\square+C$
-. $\int \sec u \tan u d u=\square+C$
-. $\int \sin u d u=$ \qquad $+C$
-. $\int \csc ^{2} u d u=\square+C$
-. $\int \csc u \cot u d u=\square+C$
-. $\int \tan u d u=\square+C$
-. $\int \cot u d u=\square+C$
-. $\int \sec u d u=\square+C$
-. $\int \csc u d u=\square+C$
-. $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u \stackrel{a>0}{=}+C$
-. $\int \frac{1}{a^{2}+u^{2}} d u \stackrel{a>0}{=}+C$
-. $\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u \stackrel{a>0}{=}+C$

Integration from Calculus II

-. Integration by parts formula: $\int u d v=$ \qquad
-. To integrate $\frac{f(x)}{g(x)}$, where f and g are polyonomials, $1^{\text {st }}$ find its \qquad (PDF).

- If [degree of $f] \geq$ degree of g], then one must first does \qquad .
- If [degree of f] < [degree of g] 〈i.e., have strictly bigger bottoms〉 then first factor $y=g(x)$ into:
 factors $p x+q$ and
* irreducible \square factors $a x^{2}+b x+c$ (to be sure it's irreducible, you need \qquad) .

Next, collect up like terms and follow the following rules.
Rule 1: For each factor of the form $(p x+q)^{m}$ where $m \geq 1$, the decomposition of $y=\frac{f(x)}{g(x)}$ contains a sum of \square partial fractions of the form, where each A_{i} is a real number,

Rule 2: For each factor of the form $\left(a x^{2}+b x+c\right)^{n}$ where $n \geq 1$, the decomposition of $y=\frac{f(x)}{g(x)}$ contains a sum of \square partial fractions of the form, where the A_{i} 's and B_{i} 's are real number,

-. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and $a>0$.

- if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ \qquad .
- if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ \qquad .
- if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ \qquad .

Improper Integrals

0. Fill-in-the boxes. Below, $a, b, c \in \mathbb{R}$ with $a<c<b$.
-. If $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{0}^{\infty} f(x) d x$ by

$$
\int_{0}^{\infty} f(x) d x=\square
$$

-. If $f:(-\infty, 0] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{-\infty}^{0} f(x) d x$ by

$$
\int_{-\infty}^{0} f(x) d x=\square
$$

-. If $f:(-\infty, \infty) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{-\infty}^{\infty} f(x) d x$ by

$$
\int_{-\infty}^{\infty} f(x) d x=\square
$$

-. If $f:(a, b] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\square
$$

-. If $f:[a, b) \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\square
$$

-. If $f:[a, c) \cup(c, b] \rightarrow \mathbb{R}$ is continuous, then we define the improper integral $\int_{a}^{b} f(x) d x$ by

$$
\int_{a}^{b} f(x) d x=\square .
$$

- An improper integral as above converges precisely when
\square
- An improper integral as above diverges precisely when
\square
- An improper integral as above diverges to ∞ precisely when
\square
- An improper integral as above diverges to ${ }^{-} \infty$ precisely when
\square

Sequences

-. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers. Complete the below sentences.

- The limit of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is the real number L provided for each $\epsilon>0$ there exists a natural number N so that if the natural number n satisfies \qquad $>$ \qquad then \qquad $<$ \qquad .
- If the limit of $\left\{a_{n}\right\}_{n=1}^{\infty}$ is $L \in \mathbb{R}$, then we denote this by \qquad .
- $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges provided \qquad _.
- $\left\{a_{n}\right\}_{n=1}^{\infty}$ diverges provided $\left\{a_{n}\right\}_{n=1}^{\infty}$ \qquad .
-. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)
- $\lim _{n \rightarrow \infty} \frac{5 n^{17}+6 n^{2}+1}{7 n^{18}+9 n^{3}+5}=\square \quad$ - $\lim _{n \rightarrow \infty} \frac{36 n^{17}-6 n^{2}-1}{4 n^{17}+9 n^{3}+5}=$
- $\lim _{n \rightarrow \infty} \frac{-5 n^{18}+6 n^{2}+1}{7 n^{17}+9 n^{3}+5}=$
- $\lim _{n \rightarrow \infty} \sqrt{\frac{36 n^{17}-6 n^{2}-1}{4 n^{17}+9 n^{3}+5}}=$ \qquad
- Can you do similar problems?
-. Commonly Occurring Limits 〈Thomas Book §10.1, Theorem 5 page 578\rangle

(1) $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=$	
(2) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=$	
(3) $\lim _{n \rightarrow \infty} c^{1 / n}=$	$(c>0)$
(4) $\lim _{n \rightarrow \infty} c^{n}=$	$(\|c\|<1)$
(5) $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)^{n}=$	$(c \in \mathbb{R})$
(6) $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=$	$(c \in \mathbb{R})$

-. Let $-\infty<r<\infty$. (Needed for Geometric Series. Warning, don't confuse sequences with series.)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}=\square$.
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}=\square$.
- If $r>1$, then $\lim _{n \rightarrow \infty} r^{n}=\square$.
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}=$ \qquad
- If $r<-1$, then $\lim _{n \rightarrow \infty} r^{n}=$ \qquad

Series

- In this section, all series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.
-. For a formal series $\sum_{n=1}^{\infty} a_{n}$, where each $a_{n} \in \mathbb{R}$, consider the corresponding sequence $\left\{s_{N}\right\}_{N=1}^{\infty}$ of partial sums, so $s_{N}=\sum_{n=1}^{N} a_{n}$. Then the formal series $\sum a_{n}$:
- converges if and only if \qquad
- converges to $L \in \mathbb{R}$ if and only if \qquad
- diverges if and only if \qquad .
Now assume, furthermore, that $a_{n} \geq 0$ for each n. Then the sequence $\left\{s_{N}\right\}_{N=1}^{\infty}$ of partial sums either
- is bounded above (by some finite number), in which case the series $\sum a_{n}$ \qquad
or
- is not bounded above (by some finite number), in which case the series $\sum a_{n}$ \qquad .
-. State the $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
\square
-. Fix $r \in \mathbb{R}$. For $N \geq 17$, let $s_{N}=\sum_{\mathbf{n}=17}^{N} r^{n}$ (Note the sum starts at 17). Then, for $N>17$,
- $s_{N}=$ (your answer can have \ldots 's but not a \sum sign)
- $r s_{N}=\ldots$ (your answer can have ...'s but not a \sum sign)
- $(1-r) s_{N}=\ldots$ (your answer should have neither ...'s nor a \sum sign)
- and if $r \neq 1$, then $s_{N}=$ (your answer should have neither ...'s nor a \sum sign)
-. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$ (hint: look at the previous questions):
- converges if and only if
- diverges if and only if

-. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if
- diverges if and only if \square
This can be shown by using the \qquad〈here, name the test one uses〉 and comparing (the hard to compute series) $\sum \frac{1}{n^{p}}$ to (the easy to compute improper integral) $\int_{x=1}^{\infty} \ldots d x$.

Tests for Positive-Termed Series

(so for $\sum a_{n}$ where $a_{n} \geq 0$)
0.1. State the Integral Test with Remainder Estimate for a positive-termed series $\sum a_{n}$.

Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
(1) $a_{n}=f(n)$ for each $n \in \mathbb{N}$
(2) f is a \square function
(3) f is a \qquad function
(4) f is a \qquad function.

Then

- $\sum a_{n}$ converges if and only if \square converges.
- and if $\sum a_{n}$ converges, then

$$
0 \leq\left(\sum_{k=1}^{\infty} a_{k}\right)-\left(\sum_{k=1}^{N} a_{k}\right) \leq \square .
$$

0.2. State the Direct Comparison Test for a positive-termed series $\sum a_{n}$.
\square when $n \geq 17$ and \square, then $\sum a_{n}$ converges.

- If \square when $n \geq 17$ and \square, then $\sum a_{n}$ diverges.

Hint: sing the song to yourself.
0.3. State the Limit Comparison Test for a positive-termed series $\sum a_{n}$.

Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$.

- If $0<L<\infty$, then \square
- If $L=0$, then \square
- If $L=\infty$, then \square
Goal: cleverly pick positive b_{n} 's so that you know what $\sum b_{n}$ does (converges or diverges) and the sequence $\left\{\frac{a_{n}}{b_{n}}\right\}_{n}$ converges.
0.4. Helpful Intuition Fill in the 3 boxes using: $e^{x}, \ln x, x^{q}$. Use each once, and only once.

Consider a positive power $q>0$. There is (some big number) $N_{q}>0$ so that if $x \geq N_{q}$ then

Tests for Arbitrary-Termed Series

(so for $\sum a_{n}$ where $-\infty<a_{n}<\infty$)
0.5. By definition, for an arbitrary series $\sum a_{n}$, (fill in these 3 boxes with convergent or divergent).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ is \square.
- $\sum a_{n}$ is conditionally convergent if and only if

$$
\sum a_{n} \text { is } \quad \text { and } \sum\left|a_{n}\right| \text { is } \square .
$$

- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ is divergent.
0.6. State the Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$. Let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad \text { or } \quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}} .
$$

- If \quad then $\sum a_{n}$ converges absolutely.
- If \quad then $\sum a_{n}$ diverges.
- If \square then the test is inconclusive.
0.7. State the Alternating Series Test (AST) \& Alternating Series Estimation Theorem. Let
(1) $u_{n} \geq 0$ for each $n \in \mathbb{N}$
(2) $\lim _{n \rightarrow \infty} u_{n}=\square$
(3)

Then

- and we can estimate (i.e., approximate) the infinite sum $\sum_{n=1}^{\infty}(-1)^{n} u_{n}$ by the finite sum $\sum_{k=1}^{N}(-1)^{k} u_{k}$ and the error (i.e. remainder) satisfies

$$
\left|\sum_{k=1}^{\infty}(-1)^{k} u_{k}-\sum_{k=1}^{N}(-1)^{k} u_{k}\right| \leq \square
$$

Power Series

Condsider a (formal) power series

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{1.1}
\end{equation*}
$$

with radius of convergence $R \in[0, \infty]$.
(Here $x_{0} \in \mathbb{R}$ is fixed and $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)
Without any other further information on $\left\{a_{n}\right\}_{n=0}^{\infty}$, answer the following questions.
-. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,
AC stands for: always absolutely convergent
CC stands for: always conditionally convergent
DIVG stands for: is always divergent
anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.
(1) At the center $x=x_{0}$, the power series in 1.1)

(2) For $x \in \mathbb{R}$ such that $\left|x-x_{0}\right|<R$, the power series in (1.1)
(3) For $x \in \mathbb{R}$ such that $\left|x-x_{0}\right|>R$, the power series in (1.1)
(4) If $R>0$, then for the endpoints $x=x_{0} \pm R$, the power series in (1.1) \square
-. For this part, fill in the 7 boxes.
Let $R>0$ and consider the function $y=h(x)$ defined by the power series in (1.1).
(1) The function $y=h(x)$ is always differentiable on the interval (make this interval as large as it can be, but still keeping the statement true).
Furthermore, if x is in this interval, then

$$
\begin{equation*}
h^{\prime}(x)=\sum_{n=\square}^{\infty} \square . \tag{1.2}
\end{equation*}
$$

What can you say about the radius of convergence of the power series in (1.2)?
\square
(2) The function $y=h(x)$ always has an antiderivative on the interval (make this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in this interval, then

$$
\int_{x=\alpha}^{x=\beta} h(x) d x=\left.\sum_{n=\square}^{\infty} \square\right|_{\mathbf{x}=\alpha} ^{\mathbf{x}=\beta}
$$

Taylor/Maclaurin Polynomials and Series

Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=P_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
Let c_{n} be the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about x_{0}.
a. The formula for c_{n} is
\square
b. In open form (i.e., with \ldots and without a \sum-sign)

$$
P_{N}(x)=\square
$$

c. In closed form (i.e., with a \sum-sign and without ...)

$$
P_{N}(x)=\square
$$

d. In open form (i.e., with \ldots and without a \sum-sign)

$$
P_{\infty}(x)=\square
$$

e. In closed form (i.e., with a \sum-sign and without ...)

$$
P_{\infty}(x)=\square
$$

f. We know that $f(x)=P_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$
R_{N}(x)=\square \text { for some } c \text { between } \square \text { and } \square
$$

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_{0}=\square$.

Commonly Used Taylor Series

-. Here, expansion refers to the power series expansion that is the Maclaurin series.
-. An expansion for $y=e^{x}$ is \square, which is valid precisely when $x \in \square$.
-. An expansion for $y=\cos x$ is \square, which is valid precisely when $x \in \square$.
-. An expansion for $y=\sin x$ is \square, which is valid precisely when $x \in \square$
-. An expansion for $y=\frac{1}{1-x}$ is \quad, which is valid precisely when $x \in \square$
-. An expansion for $y=\ln (1+x)$ is \square, which is valid precisely when $x \in \square$.
-. An expansion for $y=\arctan x$ is \square, which is valid precisely when $x \in \square$.

Parametric Curves

In this part, fill in the 4 boxes. Consider the curve \mathcal{C} parameterized by

$$
\begin{aligned}
x & =x(t) \\
y & =y(t)
\end{aligned}
$$

for $a \leq t \leq b$.

1) Express $\frac{d y}{d x}$ in terms of derivatives with respect to t. Answer: $\frac{d y}{d x}=$
2) The tangent line to \mathcal{C} when $t=t_{0}$ is $y=m x+b$ where m is
3) Express $\frac{d^{2} y}{d x^{2}}$ using derivatives with respect to t. Answer: $\frac{d^{2} y}{d x^{2}}=$
4) The arc length of \mathcal{C}, expressed as on integral with respect to t, is

$$
\text { Arc Length }=\square
$$

Polar Coordinates

-. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.
-. A point with $\mathrm{PC}(r, \theta)$ also has $\mathrm{PC}(\square, \theta+2 \pi)$ as well as $(\square, \theta+\pi)$.

- A point $P \in \mathbb{R}^{2}$ with $\mathrm{CC}(x, y)$ and $\mathrm{PC}(r, \theta)$ satisfies the following.

$$
x=\square \quad \& \quad y=\square \quad \& \quad r^{2}=\square \quad \square \quad \begin{array}{ll}
\frac{y}{x} & \text { if } x \neq 0 \\
\text { DNE } & \text { if } x=0
\end{array}
$$

-. The period of $f(\theta)=\cos (k \theta)$ and of $f(\theta)=\sin (k \theta)$ is \square
To sketch these graphs, we divide the period by \square and make the chart,
in order to detect the

- Now consider a sufficiently nice function $r=f(\theta)$ which determines a curve in the plane.

The the area bounded by polar curves $r=f(\theta)$ and the rays $\theta=\alpha$ and $\theta=\beta$ is

$$
\text { Area }=\int_{\theta=\alpha}^{\theta=\beta} \square d \theta
$$

The arc length of the polar curves $r=f(\theta)$ is

$$
\text { Arc Length }=\int_{\theta=\alpha}^{\theta=\beta} \square d \theta
$$

