Review of Basic Concepts

’Review of some needed Trig. Identities for Integration

e. Your answers should be an angle in RADIANS.

e arccos( % ) = e arccos( -1 ) =
e arcsin( 3 ) = e arcsin( -1 ) =

e Can you do similar problems?

o=

. Double-angle formulas. Your answer should involve trig functions of #, and not of 26.

e cos(20) = e sin(26) =

. Half-angle formulas. Your answer should involve cos(26).

e cos?(0) = e sin?(0) =

. Since cos? § + sin? @ = 1, we know that the corresponding relationship beween:

e tangent (i.e., tan) and secant (i.e., sec) is

e cotangent (i.e., cot) and cosecant (i.e., csc) is

’Remember Your Calculus I Integration Basics?

o [du 2 +C

o. [u"du e +C
o. [e"du= +C

.. [atdu “T'= +C
o. [cosudu = +C
o. [sec’udu = +C
o. [secutanudu = +C
o. [sinudu = +C
o. [csc®udu = +C
o. [cscucotudu = +C
o. [tanudu = +C
o. [cotudu = +C
o. [secudu = +C
o. [cscudu = +C
o [ —du +C
o [ odu 2 +C
o [A—du = +C
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Review of Basic Concepts

’Integration from Calculus II

e. Integration by parts formula: [udv =

eo. To integrate %, where f and g are polyonomials, 1St find its (PDF)

o If [degree of f] > [degree of g|, then one must first does .
o If [degree of f] < [degree of g] (i.e., have strictly bigger bottoms) then first factor y = g(x) into:

* ’ ‘ factors pxr + ¢ and
* irreducible factors ax? + bz + ¢ (to be sure it’s irreducible,
you need ’ ‘ ).

Next, collect up like terms and follow the following rules.
Rule 1: For each factor of the form (pz+¢)™ where m > 1, the decomposition of y = % contains

a sum of D partial fractions of the form, where each A; is a real number,

Rule 2: For each factor of the form (az?® + bx + ¢)™ where n > 1, the decomposition of y = e)

contains a sum of D partial fractions of the form, where the A;’s and B;’s are real number,

o, TI'lg Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.

e if the integrand involves a? —u?, then one makes the substitution v =

e if the integrand involves a®+wu?, then one makes the substitution v =
e if the integrand involves u? —a?, then one makes the substitution v =

Improper Integrals ‘

0. Fill-in-the boxes. Below, a,b,c € R with a < ¢ < b.

o. If f:[0,00) — R is continuous, then we define the improper integral / f (z) dx by
0

| e

o. If f: (—00,0] = R is continuous, then we define the improper integral / f (z) dz by

/iof(x)dxz

Prof. Girardi Page 2 of [1] Math 142




Review of Basic Concepts

If f: (—00,00) — R is continuous, then we define the improper integral / f (z) dz by

/Zf(x)dwz

b
LIf f: (a,b] — R is continuous, then we define the improper integral / f (z) dz by

/abf(:v)dfr=

b
If f:]a,b) — R is continuous, then we define the improper integral / f (z) dx by

[ 1@ =

b
I f:]a,¢) U (e, b — R is continuous, then we define the improper integral / f (z) dx by

/abf(x)dxz

. An improper integral as above converges precisely when

. An improper integral as above diverges precisely when

. An improper integral as above diverges to oo precisely when

. An improper integral as above diverges to oo precisely when
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Sequences

o. Let {a,}7°, be a sequence of real numbers. Complete the below sentences.
e The limit of {a,}52, is the real number L provided for each e > 0 there exists a natural

number N so that if the natural number n satisfies > then <

e If the limit of {a,}5%, is L € R, then we denote this by

o :
e {a,}>2 | converges provided

e {a,}>2, diverges provided {a,}>2,

. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

o omliT+6n2+1 o 36nt"—6n2 -1
e lim T = e lim - =
n—oo T8 +9n3 + 5 n—oo 4nl7T +9n3 + 5
. -t 6en? +1 _ 36nl7 —6n2 — 1
e lim = e lim =
noo TRT+ O3 4+5 2 ——————————— n—oo | 4nlT +9n3 +5

e Can you do similar problems?

e. Commonly Occurring Limits (Thomas Book §10.1, Theorem 5 page 578)

. Inn
W= =

(2) lim {/n =

n—oo

o. Let —oo < r < 00. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

o If |r| < 1, then limr":’ ‘
n—oo

o If r=1, then hmr”:’ ‘
n—oo
E

o If r > 1, then lim " =

n—o0

o If r =-1, then limr”:’ ‘
n—oo

o If r < -1, then lim'r”:’ ‘
n—o0
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o)

. In this section, all series ) are understood to be Z , unless otherwise indicated.
n=1
. For a formal series Y > | a,, where each a,, € R, consider the corresponding sequence {sy}¥_; of
partial sums, so sy = ij:l a,. Then the formal series > a,:
e converges if and only if

e converges to L € R if and only if

e diverges if and only if

Now assume, furthermore, that a, > 0 for each n. Then the sequence {sy}%_; of partial sums
either
e is bounded above (by some finite number), in which case the series > a,

or
e is not bounded above (by some finite number), in which case the series Y a,,

. State the n*P-term test for an arbitrary series > a,.

. FixreR. For N > 17, let sy = 25:17 r" (Note the sum starts at 17). Then, for N > 17,

® SNy = (your answer can have ...’s but not a ) sign)

e Sy = (your answer can have ...’s but not a ) sign)

° (1 — 7“) SN = (your answer should have neither ...’s nor a Y sign)

e and if r 7& ]_, then SN = (your answer should have neither ...’s nor a | sign)

. Geometric Series where —oo < r < co. The series Y 7" (hint: look at the previous questions):

e converges if and only if ’ ‘

e diverges if and only if ’ ‘ .

. p-series where 0 < p < co. The series > &

e converges if and only if ’ ‘ .

e diverges if and only if ’ ‘ .

This can be shown by using the (nere, name the test one uses) and comparing

(the hard to compute series) Z L tO (the easy to compute improper integral) foo dx
p - y p prop g el —_ Q.
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Tests for Positive-Termed Series
(so for Y a, where a,, > 0)

0.1. State the Integral Test with Remainder Estimate for a positive-termed series Y a,,.

Let f: [1,00) — R be so

that

(1) a, = f (n) for each n € N
(2) fisa ’ ‘ function
(3) fisa ’ ‘ function
(4) fisa ’ ‘ function.
Then
e > a, converges if and only if converges.

e and if > a, conv

erges, then

) () -

0.2. State the Direct Comparison Test for a positive-termed series Y a,,.

o If

when n > 17 and

o If

Hint: sing the song to yourself.

0.3. State the Limit Comparison Test for a positive-termed series »_ a,,.

Let b,, > 0 and L = lim,,
e [f0< L <0,
o If L=0, then

o If L =00, then

an
—0 p,

when n > 17 and

, then Y a,, converges.

, then >~ a, diverges.

then

Goal: cleverly pick positive bp’s so that you know what > b, does (converges or diverges) and the sequence {Z—"} converges.
n S n

0.4. Helpful Intuition Fill in the 3 boxes using: e¢”, Inz, z?. Use each once, and only once.

Consider a positive power ¢ > 0. There is (some big number) N, > 0 so that if x > N, then

<

<
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Tests for Arbitrary-Termed Series
(so for Y a, where —oco < a, < 00)

0.5. By definition, for an arbitrary series »_ a,, (fill in these 3 boxes with convergent or divergent).

e 3 ay is absolutely convergent if and only if 3 |a,| is | E

* >_ay is conditionally convergent if and only if
> ay is ’ ‘ and > |a,| is ’ ‘ :
® > a, is divergent if and only if ) a, is divergent.

0.6. State the Ratio and Root Tests for arbitrary-termed series > a,, with —oco < a,, < co. Let

Ap+1
G,

o If |:| then > a, converges absolutely.
o If I:' then > a,, diverges.
o If I:' then the test is inconclusive.

or  p=lim Ja,[* .

p = lim
n—oo

0.7. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

(1) Unp, Z 0 for each n € N

(2) limy, o0 up, = I:'
(3) Up, I:' Up4-1 for each n € N.

Then

e and we can estimate (i.e., approximate) the infinite sum » (—1)"u, by the finite sum

S (=1)*uy, and the error (i.e. remainder) satisfies
00 N

D (Dfup = Y (=D <

k=1 k=1
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’ Power Series \

Condsider a (formal) power series

h(x) = Y an(z— )" | (1.1)

n=0
with radius of convergence R € [0, oc.
(Here 2o € R is fixed and {a,}>2, is a fixed sequence of real numbers.)

Without any other further information on {a,} -, answer the following questions.

e. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,

AC stands for: always absolutely convergent
CC stands for: always conditionally convergent
DIVG stands for: is always divergent
anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.

(1) At the center x = x¢, the power series in ([1.1))

(2) For x € R such that |x — z¢| < R, the power series in ({1.1)

(3) For x € R such that |z — x¢| > R, the power series in ([1.1)

(4) If R > 0, then for the endpoints © = z¢+ R, the power series in ([1.1))

e. For this part, fill in the 7 boxes.
Let R > 0 and consider the function y = h(z) defined by the power series in (1.1).

(1) The function y = h(x) is always differentiable on the interval

(make this interval as large as it can be, but still keeping the statement true).

Furthermore, if x is in this interval, then

o0

What can you say about the radius of convergence of the power series in (|1.2))?

(2) The function y = h(x) always has an antiderivative on the interval

(make this interval as large as it can be, but still keeping the statement true).

Futhermore, if o and ( are in this interval, then

x=0

Prof. Girardi Page 8 of [11] Math 142



Review of Basic Concepts

Taylor /Maclaurin Polynomials and Series

Let y = f(z) be a function with derivatives of all orders in an interval I containing z.
Let y = Py(z) be the N*'-order Taylor polynomial of y = f(x) about .

Let y = Ry(z) be the N**-order Taylor remainder of y = f(x) about .

Let y = P, (x) be the Taylor series of y = f(x) about x.

Let ¢, be the n'™ Taylor coefficient of y = f(z) about z.

. The formula for ¢, is

Cp =

. In open form (i.e., with ... and without a ) -sign)

PN(I) =

. In closed form (i.e., with a ) -sign and without ... )

PN(ZE) =

. In open form (i.e., with ... and without a ) -sign)

POO(I) =

. In closed form (i.e., with a ) -sign and without ... )

Po(x) =

. We know that f(x) = Py(x) + Ry(x). Taylor’s BIG Theorem tells us that, for each = € I,

Rn(z) = for some ¢ between and

. A Maclaurin series is a Taylor series with the center specifically specified as zy =
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Commonly Used Taylor Series

. Here, expansion refers to the power series expansion that is the Maclaurin series.

. An expansion for y = e* is

, which is valid precisely when x €

. An expansion for y = cos x is

, which is valid precisely when x €

. An expansion for y = sin x is

, which is valid precisely when x €

. An expansion for y = ﬁ is

, which is valid precisely when = €

. An expansion for y = In(14x) is

. An expansion for y = arctan z is

, which is valid precisely when x €

, which is valid precisely when x €
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’ Parametric Curves ‘

In this part, fill in the 4 boxes. Consider the curve C parameterized by
r=uz(t)
y = y(t)

for a <t <.

d d
1) Express d—y in terms of derivatives with respect to t. Answer: d_y =
x x

2) The tangent line to C when ¢ = t( is y = max + b where m is evaluated at t = .
%y %y
3) Express — using derivatives with respect to t. Answer: — =
dz? dz?

4) The arc length of C, expressed as on integral with respect to ¢, is

Arc Length =

’ Polar Coordinates ‘

. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

. A point with PC (r,0) also has PC ( |:| , 0+ 27r> as well as < |:| : 9—1—7r> :
. A point P € R? with CC (z,y) and PC (r, §) satisfies the following.

s v w0 & ] & - i 170

. The period of f(f) = cos(kf) and of f(0) = sin(k0) is

To sketch these graphs, we divide the period by and make the chart,

in order to detect the

. Now consider a sufficiently nice function r = f(6) which determines a curve in the plane.
The the area bounded by polar curves r = f(#) and the rays § = « and 6 = (3 is

6=
Area = / do .
0

=

The arc length of the polar curves r = f(6) is

0=p
Arc Length = / de .

0=«
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