## Review of some needed Trig. Identities for Integration

- •. Your answers should be an angle in **RADIANS**.
  - $\operatorname{arccos}(\frac{1}{2}) =$   $\operatorname{arccos}(-\frac{1}{2}) =$   $\operatorname{arccos}(-\frac{1}{2}) =$   $\operatorname{arccos}(-\frac{1}{2}) =$ •  $\operatorname{arccos}(-\frac{1}{2}) =$

  - Can you do similar problems?
- •. Double-angle formulas. Your answer should involve trig functions of  $\theta$ , and not of  $2\theta$ .

• 
$$\cos(2\theta) =$$
   
•  $\sin(2\theta) =$   
• Half-angle formulas. Your answer should involve  $\cos(2\theta)$ .  
•  $\cos^2(\theta) =$    
•  $\sin^2(\theta) =$ 

- •. Since  $\cos^2 \theta + \sin^2 \theta = 1$ , we know that the corresponding relationship between:
  - tangent (i.e., tan) and secant (i.e., sec) is \_\_\_\_\_\_.
  - cotangent (i.e., cot) and cosecant (i.e., csc) is

# **Remember Your Calculus I Integration Basics?**



## Integration from Calculus II

- •. Integration by parts formula:  $\int u \, dv =$
- •. To integrate  $\frac{f(x)}{q(x)}$ , where f and g are polyonomials, 1<sup>st</sup> find its \_\_\_\_\_ (PDF).

  - If [degree of f] ≥ [degree of g], then one must first does \_\_\_\_\_.
    If [degree of f] < [degree of g] (i.e., have strictly bigger bottoms) then first factor y = g(x) into:</li> factors px + q and factors  $ax^2 + bx + c$  (to be sure it's irreducible, \* irreducible vou need

Next, collect up like terms and follow the following rules.

**Rule 1**: For each factor of the form  $(px+q)^m$  where  $m \ge 1$ , the decomposition of  $y = \frac{f(x)}{q(x)}$  contains partial fractions of the form, where each  $A_i$  is a real number, a sum of



**Rule 2**: For each factor of the form  $(ax^2 + bx + c)^n$  where  $n \ge 1$ , the decomposition of  $y = \frac{f(x)}{g(x)}$ contains a sum of  $\square$  partial fractions of the form, where the  $A_i$ 's and  $B_i$ 's are real number,

- •. Trig. Substitution. (Recall that the *integrand* is the function you are integrating.) Here, a is a constant and a > 0.
  - if the integrand involves  $a^2 u^2$ , then one makes the substitution u =\_\_\_\_\_\_. if the integrand involves  $a^2 + u^2$ , then one makes the substitution u =\_\_\_\_\_\_. if the integrand involves  $u^2 a^2$ , then one makes the substitution u =\_\_\_\_\_\_.

# Improper Integrals

**0.** Fill-in-the boxes. Below,  $a, b, c \in \mathbb{R}$  with a < c < b.

•. If  $f: [0, \infty) \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_{0}^{\infty} f(x) dx$  by

$$\int_{0}^{\infty} f\left(x\right) \, dx =$$

•. If  $f: (-\infty, 0] \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_{-\infty}^{0} f(x) dx$  by

$$\int_{-\infty}^{0} f(x) \, dx =$$

•. If  $f: (-\infty, \infty) \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_{-\infty}^{\infty} f(x) dx$  by

$$\int_{-\infty}^{\infty} f(x) \, dx =$$

•. If  $f: (a, b] \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_a^b f(x) dx$  by

$$\int_{a}^{b} f(x) \, dx =$$

•. If  $f: [a, b) \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_{a}^{b} f(x) dx$  by

$$\int_{a}^{b} f(x) \, dx = \boxed{\qquad}.$$

•. If  $f: [a,c) \cup (c,b] \to \mathbb{R}$  is continuous, then we define the improper integral  $\int_a^b f(x) dx$  by

$$\int_{a}^{b}f\left( x\right) \,dx=$$

•. An improper integral as above *converges* precisely when

- •. An improper integral as above *diverges* precisely when
- •. An improper integral as above *diverges to*  $\infty$  precisely when
- •. An improper integral as above diverges to  $-\infty$  precisely when

#### Sequences

- •. Let  $\{a_n\}_{n=1}^{\infty}$  be a sequence of real numbers. Complete the below sentences.
  - The limit of  $\{a_n\}_{n=1}^{\infty}$  is the real number L provided for each  $\epsilon > 0$  there exists a natural number N so that if the natural number n satisfies \_\_\_\_ > \_\_\_ then \_\_\_\_ < \_\_\_.
  - If the limit of  $\{a_n\}_{n=1}^{\infty}$  is  $L \in \mathbb{R}$ , then we denote this by \_\_\_\_\_
  - $\{a_n\}_{n=1}^{\infty}$  converges provided \_\_\_\_\_
  - $\{a_n\}_{n=1}^{\infty}$  diverges provided  $\{a_n\}_{n=1}^{\infty}$

•. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

- $\lim_{n \to \infty} \frac{5n^{17} + 6n^2 + 1}{7n^{18} + 9n^3 + 5} = \underline{\qquad}$   $\lim_{n \to \infty} \frac{36n^{17} 6n^2 1}{4n^{17} + 9n^3 + 5} = \underline{\qquad}$   $\lim_{n \to \infty} \frac{36n^{17} 6n^2 1}{4n^{17} + 9n^3 + 5} = \underline{\qquad}$   $\lim_{n \to \infty} \sqrt{\frac{36n^{17} 6n^2 1}{4n^{17} + 9n^3 + 5}} = \underline{\qquad}$
- Can you do similar problems?
- •. Commonly Occurring Limits (Thomas Book §10.1, Theorem 5 page 578)



•. Let  $-\infty < r < \infty$ . (Needed for Geometric Series. Warning, don't confuse sequences with series.)



## Series

- ▶. In this section, all series  $\sum$  are understood to be  $\sum_{i=1}^{n}$ , unless otherwise indicated.
- •. For a formal <u>series</u>  $\sum_{n=1}^{\infty} a_n$ , where each  $a_n \in \mathbb{R}$ , consider the corresponding sequence  $\{s_N\}_{N=1}^{\infty}$  of partial sums, so  $s_N = \sum_{n=1}^{N} a_n$ . Then the formal series  $\sum a_n$ :
  - converges if and only if
  - converges to  $L \in \mathbb{R}$  if and only if
  - diverges if and only if

or

Now assume, furthermore, that  $a_n \ge 0$  for each n. Then the sequence  $\{s_N\}_{N=1}^{\infty}$  of partial sums either

- is bounded above (by some finite number), in which case the series  $\sum a_n$
- <u>is not</u> bounded above (by some finite number), in which case the <u>series</u>  $\sum a_n$  \_\_\_\_\_.
- •. State the *n*<sup>th</sup>-term test for an arbitrary series  $\sum a_n$ .
- •. Fix  $r \in \mathbb{R}$ . For  $N \ge 17$ , let  $s_N = \sum_{n=17}^N r^n$  (Note the sum starts at 17). Then, for N > 17,
  - $s_N =$  \_\_\_\_\_ (your answer can have ...'s but not a  $\sum$  sign)  $r s_N =$  \_\_\_\_\_ (your answer can have ...'s but not a  $\sum$  sign)

    - $(1-r)s_N = \_$ (your answer should have neither ...'s nor a  $\sum$  sign)
    - and if  $r \neq 1$ , then  $s_N =$  (your answer should have neither ...'s nor a  $\sum$  sign)

•. Geometric Series where  $-\infty < r < \infty$ . The series  $\sum r^n$  (hint: look at the previous questions):

- converges if and only if
  - diverges if and only if
- •. *p*-series where  $0 . The series <math>\sum \frac{1}{n^p}$ 
  - converges if and only if • diverges if and only if

This can be shown by using the  $\_$  (here, name the test one uses) and comparing (the hard to compute series)  $\sum \frac{1}{n^p}$  to (the easy to compute improper integral)  $\int_{x=1}^{\infty}$  \_\_\_\_\_ dx .



# **0.1.** State the **Integral Test with Remainder Estimate** for a <u>positive</u>-termed series $\sum a_n$ .



# **0.2.** State the **Direct Comparison Test** for a <u>positive</u>-termed series $\sum a_n$ .

| • If | when $n \ge 17$ and $\left[\right]$ | , then $\sum a_n$ converges. |
|------|-------------------------------------|------------------------------|
| • If | when $n \ge 17$ and                 | ], then $\sum a_n$ diverges. |

Hint: sing the song to yourself.

#### **0.3.** State the Limit Comparison Test for a <u>positive</u>-termed series $\sum a_n$ .

Let  $b_n > 0$  and  $L = \lim_{n \to \infty} \frac{a_n}{b_n}$ .



Goal: cleverly pick positive  $b_n$ 's so that you know what  $\sum b_n$  does (converges or diverges) and the sequence  $\left\{\frac{a_n}{b_n}\right\}_n$  converges.

#### **0.4. Helpful Intuition** Fill in the 3 boxes using: $e^x$ , $\ln x$ , $x^q$ . Use each once, and only once.

Consider a positive power q > 0. There is (some big number)  $N_q > 0$  so that if  $x \ge N_q$  then





**0.5.** By definition, for an arbitrary series  $\sum a_n$ , (fill in these 3 boxes with convergent or divergent).

- $\sum a_n$  is absolutely convergent if and only if  $\sum |a_n|$  is
- $\sum a_n$  is <u>conditionally convergent</u> if and only if



•  $\sum a_n$  is <u>divergent</u> if and only if  $\sum a_n$  is divergent.

**0.6.** State the **Ratio and Root Tests** for arbitrary-termed series  $\sum a_n$  with  $-\infty < a_n < \infty$ . Let

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \quad \text{or} \quad \rho = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}.$$

If \_\_\_\_\_\_ then ∑ a<sub>n</sub> converges absolutely.
If \_\_\_\_\_\_ then ∑ a<sub>n</sub> diverges.
If \_\_\_\_\_\_ then the test is inconclusive.

## 0.7. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

- (1)  $u_n \ge 0$  for each  $n \in \mathbb{N}$ (2)  $\lim_{n\to\infty} u_n =$  \_\_\_\_\_ (3)  $u_n$  \_\_\_\_\_  $u_{n+1}$  for each  $n \in \mathbb{N}$ . Then • \_\_\_\_\_\_ • and we can estimate (i.e., approximate) the infinite sum  $\sum_{n=1}^{\infty} (-1)^n u_n$  by the finite sum
  - $\sum_{k=1}^{N} (-1)^k u_k$  and the error (i.e. remainder) satisfies

$$\left| \sum_{k=1}^{\infty} (-1)^k u_k - \sum_{k=1}^{N} (-1)^k u_k \right| \le \boxed{}$$

#### Power Series

Condsider a (formal) power series

$$h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n , \qquad (1.1)$$

with radius of convergence  $R \in [0, \infty]$ .

(Here  $x_0 \in \mathbb{R}$  is fixed and  $\{a_n\}_{n=0}^{\infty}$  is a fixed sequence of real numbers.)

Without any other further information on  $\{a_n\}_{n=0}^{\infty}$ , answer the following questions.

•. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,

AC stands for: always absolutely convergent

 ${\bf CC}$  stands for: always conditionally convergent

**DIVG** stands for: *is always divergent* 

anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.

(1) At the center  $x = x_0$ , the power series in (1.1)

- (2) For  $x \in \mathbb{R}$  such that  $|x x_0| < R$ , the power series in (1.1)
- (3) For  $x \in \mathbb{R}$  such that  $|x x_0| > R$ , the power series in (1.1)
- (4) If R > 0, then for the endpoints  $x = x_0 \pm R$ , the power series in (1.1)

# •. For this part, fill in the 7 boxes.

Let R > 0 and consider the function y = h(x) defined by the power series in (1.1).

(1) The function y = h(x) is <u>always differentiable</u> on the interval

(make this interval as large as it can be, but still keeping the statement true).

Furthermore, if x is in this interval, then



What can you say about the radius of convergence of the power series in (1.2)?

(2) The function y = h(x) always has an antiderivative on the interval (make this interval as large as it can be, but still keeping the statement true). Furthermore, if  $\alpha$  and  $\beta$  are in this interval, then

### Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing  $x_0$ .

Let  $y = P_N(x)$  be the N<sup>th</sup>-order Taylor polynomial of y = f(x) about  $x_0$ .

Let  $y = R_N(x)$  be the N<sup>th</sup>-order Taylor remainder of y = f(x) about  $x_0$ .

Let  $y = P_{\infty}(x)$  be the Taylor series of y = f(x) about  $x_0$ .

Let  $c_n$  be the  $n^{\text{th}}$  Taylor coefficient of y = f(x) about  $x_0$ .

**a.** The formula for  $c_n$  is

 $c_n =$ 

**b.** In open form (i.e., with  $\ldots$  and without a  $\sum$ -sign)

$$P_N(x) =$$

**c.** In closed form (i.e., with a  $\sum$ -sign and without  $\dots$ )

$$P_N(x) =$$

**d.** In open form (i.e., with  $\ldots$  and without a  $\sum$ -sign)

$$P_{\infty}(x) =$$

**e.** In closed form (i.e., with a  $\sum$ -sign and without  $\dots$ )

$$P_{\infty}(x) =$$

**f.** We know that  $f(x) = P_N(x) + R_N(x)$ . Taylor's BIG Theorem tells us that, for each  $x \in I$ ,

| $R_N(x) =$ | for some $c$ between | and |  |
|------------|----------------------|-----|--|
|            |                      |     |  |

**g.** A Maclaurin series is a Taylor series with the center specifically specified as  $x_0 =$ 

## Commonly Used Taylor Series

▶. Here, *expansion* refers to the power series expansion that is the Maclaurin series.



# Parametric Curves

In this part, fill in the 4 boxes. Consider the curve  ${\mathcal C}$  parameterized by

$$x = x(t)$$
$$y = y(t)$$

for 
$$a \le t \le b$$
.  
1) Express  $\frac{dy}{dx}$  in terms of derivatives with respect to  $t$ . Answer:  $\frac{dy}{dx} =$   
2) The tangent line to  $C$  when  $t = t_0$  is  $y = mx + b$  where  $m$  is evaluated at  $t = t_0$ .  
3) Express  $\frac{d^2y}{dx^2}$  using derivatives with respect to  $t$ . Answer:  $\frac{d^2y}{dx^2} =$   
4) The are length of  $C$ , expressed as on integral with respect to  $t$ , is  
Are Length =  
**Polar Coordinates**  
•. Here, CC stands for *Cartresian coordinates* while PC stands for *polar coordinates*.  
•. A point with PC  $(r, \theta)$  also has PC  $(\Box, \theta + 2\pi)$  as well as  $(\Box, \theta + \pi)$ .  
•. A point P  $\in \mathbb{R}^2$  with CC  $(x, y)$  and PC  $(r, \theta)$  satisfies the following.  
 $x = \Box = k$   $y = \Box = k$   $r^2 = \Box = k$   $\Box = \begin{cases} \frac{g}{2} & \text{if } x \neq 0 \\ DNE & \text{if } x = 0 \end{cases}$ .  
•. The period of  $f(\theta) = \cos(k\theta)$  and of  $f(\theta) = \sin(k\theta)$  is  $| \ |$ .  
•. Now consider a sufficiently *nice* function  $r = f(\theta)$  which determines a curve in the plane.  
The the area bounded by polar curves  $r = f(\theta)$  and the rays  $\theta = \alpha$  and  $\theta = \beta$  is  
 $\Delta \text{rea} = \int_{\theta=\alpha}^{\theta=\beta} \boxed{d\theta}$ .  
The arc length of the polar curves  $r = f(\theta)$  is  
 $\Delta \text{rea} = \int_{\theta=\alpha}^{\theta=\beta} \boxed{d\theta}$ .