
Review of Basic Concepts

Review of some needed Trig. Identities for Integration

•. Your answers should be an angle in RADIANS.

• arccos( 1
2

) = • arccos( -1
2

) =

• arcsin( 1
2

) = • arcsin( -1
2

) =

• Can you do similar problems?

•. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ.

• cos(2θ) = • sin(2θ) = .

•. Half-angle formulas. Your answer should involve cos(2θ).

• cos2(θ) = • sin2(θ) =

•. Since cos2 θ + sin2 θ = 1, we know that the corresponding relationship beween:

• tangent (i.e., tan) and secant (i.e., sec) is .

• cotangent (i.e., cot) and cosecant (i.e., csc) is .

Remember Your Calculus I Integration Basics?

•.
∫

du
u

u6=0
= + C

•.
∫
un du

n6=−1
= +C

•.
∫
eu du = +C

•.
∫
au du

a6=1
= = + C

•.
∫

cosu du = + C

•.
∫

sec2 u du = +C

•.
∫

secu tanu du = +C

•.
∫

sinu du = + C

•.
∫

csc2 u du = +C

•.
∫

cscu cotu du = +C

•.
∫

tanu du = + C

•.
∫

cotu du = + C

•.
∫

secu du = + C

•.
∫

cscu du = + C

•.
∫

1√
a2−u2 du

a>0
= + C

•.
∫

1
a2+u2

du
a>0
= + C

•.
∫

1
u
√
u2−a2 du

a>0
= + C
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Review of Basic Concepts

Integration from Calculus II

•. Integration by parts formula:
∫
u dv =

•. To integrate f(x)
g(x)

, where f and g are polyonomials, 1st find its (PDF).

• If [degree of f ] ≥ [degree of g], then one must first does .
• If [degree of f ] < [degree of g] 〈i.e., have strictly bigger bottoms〉 then first factor y = g(x) into:

∗ factors px+ q and

∗ irreducible factors ax2 + bx+ c (to be sure it’s irreducible,

you need ) .

Next, collect up like terms and follow the following rules.

Rule 1: For each factor of the form (px+q)m where m ≥ 1, the decomposition of y = f(x)
g(x)

contains

a sum of partial fractions of the form, where each Ai is a real number,

.

Rule 2: For each factor of the form (ax2 + bx + c)n where n ≥ 1, the decomposition of y = f(x)
g(x)

contains a sum of partial fractions of the form, where the Ai’s and Bi’s are real number,

.

•. Trig. Substitution. (Recall that the integrand is the function you are integrating.) Here, a is a constant and a > 0.

• if the integrand involves a2−u2, then one makes the substitution u = .
• if the integrand involves a2+u2, then one makes the substitution u = .
• if the integrand involves u2−a2, then one makes the substitution u = .

Improper Integrals

0. Fill-in-the boxes. Below, a, b, c ∈ R with a < c < b.

•. If f : [0,∞)→ R is continuous, then we define the improper integral

∫ ∞
0

f (x) dx by

∫ ∞
0

f (x) dx = .

•. If f : (−∞, 0]→ R is continuous, then we define the improper integral

∫ 0

−∞
f (x) dx by

∫ 0

−∞
f (x) dx = .
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Review of Basic Concepts

•. If f : (−∞,∞)→ R is continuous, then we define the improper integral

∫ ∞
−∞

f (x) dx by

∫ ∞
−∞

f (x) dx = .

•. If f : (a, b]→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx = .

•. If f : [a, b)→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx = .

•. If f : [a, c) ∪ (c, b]→ R is continuous, then we define the improper integral

∫ b

a

f (x) dx by

∫ b

a

f (x) dx = .

•. An improper integral as above converges precisely when

•. An improper integral as above diverges precisely when

•. An improper integral as above diverges to ∞ precisely when

•. An improper integral as above diverges to –∞ precisely when
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Sequences

•. Let {an}∞n=1 be a sequence of real numbers. Complete the below sentences.

• The limit of {an}∞n=1 is the real number L provided for each ε > 0 there exists a natural

number N so that if the natural number n satisfies > then < .

• If the limit of {an}∞n=1 is L ∈ R, then we denote this by .

• {an}∞n=1 converges provided .

• {an}∞n=1 diverges provided {an}∞n=1 .

•. Practice taking basic limits. (Important, e.g., for Ratio and Root Tests.)

• lim
n→∞

5n17 + 6n2 + 1

7n18 + 9n3 + 5
= • lim

n→∞

36n17 − 6n2 − 1

4n17 + 9n3 + 5
=

• lim
n→∞

-5n18 + 6n2 + 1

7n17 + 9n3 + 5
= • lim

n→∞

√
36n17 − 6n2 − 1

4n17 + 9n3 + 5
=

• Can you do similar problems?

•. Commonly Occurring Limits 〈Thomas Book §10.1, Theorem 5 page 578〉

(1) lim
n→∞

lnn

n
=

(2) lim
n→∞

n
√
n =

(3) lim
n→∞

c1/n = (c > 0)

(4) lim
n→∞

cn = (|c| < 1)

(5) lim
n→∞

(
1 + c

n

)n
= (c ∈ R)

(6) lim
n→∞

xn

n!
= (c ∈ R)

•. Let −∞ < r <∞. (Needed for Geometric Series. Warning, don’t confuse sequences with series.)

• If |r| < 1, then lim
n→∞

rn = .

• If r = 1, then lim
n→∞

rn = .

• If r > 1, then lim
n→∞

rn = .

• If r = -1, then lim
n→∞

rn = .

• If r < -1, then lim
n→∞

rn = .
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Series

I. In this section, all series
∑

are understood to be
∞∑
n=1

, unless otherwise indicated.

•. For a formal series
∑∞

n=1 an, where each an ∈ R, consider the corresponding
:::::::::
sequence {sN}∞N=1 of

partial sums, so sN =
∑N

n=1 an. Then the formal series
∑
an:

• converges if and only if

• converges to L ∈ R if and only if

• diverges if and only if .

Now assume, furthermore, that an ≥ 0 for each n. Then the
:::::::::
sequence {sN}∞N=1 of partial sums

either

• is bounded above (by some finite number), in which case the series
∑
an

or
• is not bounded above (by some finite number), in which case the series

∑
an .

•. State the nth-term test for an arbitrary
:::::
series

∑
an.

•. Fix r ∈ R. For N ≥ 17, let sN =
∑N

n=17 rn (Note the sum starts at 17). Then, for N > 17,

• sN = (your answer can have . . .’s but not a
∑

sign)

• r sN = (your answer can have . . .’s but not a
∑

sign)

• (1− r) sN = (your answer should have neither . . .’s nor a
∑

sign)

• and if r 6= 1, then sN = (your answer should have neither . . .’s nor a
∑

sign)

•. Geometric Series where −∞ < r <∞. The series
∑
rn (hint: look at the previous questions):

• converges if and only if

• diverges if and only if .

•. p-series where 0 < p <∞. The series
∑

1
np

• converges if and only if .

• diverges if and only if .

This can be shown by using the 〈here, name the test one uses〉 and comparing

(the hard to compute series)
∑

1
np to (the easy to compute improper integral)

∫∞
x=1

dx .
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Tests for Positive-Termed Series
(so for

∑
an where an ≥ 0)

0.1. State the Integral Test with Remainder Estimate for a
::::::::
positive-termed series

∑
an.

Let f : [1,∞)→ R be so that

(1) an = f (n) for each n ∈ N

(2) f is a function

(3) f is a function

(4) f is a function.

Then

•
∑
an converges if and only if converges.

• and if
∑
an converges, then

0 ≤

(
∞∑
k=1

ak

)
−

(
N∑
k=1

ak

)
≤ .

0.2. State the Direct Comparison Test for a
::::::::
positive-termed series

∑
an.

• If when n ≥ 17 and , then
∑

an converges.

• If when n ≥ 17 and , then
∑

an diverges.

Hint: sing the song to yourself.

0.3. State the Limit Comparison Test for a
::::::::
positive-termed series

∑
an.

Let bn > 0 and L = limn→∞
an
bn

.

• If 0 < L <∞ , then

• If L = 0 , then .

• If L =∞ , then .

Goal: cleverly pick positive bn’s so that you know what
∑
bn does (converges or diverges) and the sequence

{
an
bn

}
n
converges.

0.4. Helpful Intuition Fill in the 3 boxes using: ex, ln x, xq. Use each once, and only once.

Consider a positive power q > 0. There is (some big number) Nq > 0 so that if x ≥ Nq then

≤ ≤ .
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Tests for Arbitrary-Termed Series
(so for

∑
an where −∞ < an <∞)

0.5. By definition, for an arbitrary series
∑
an, (fill in these 3 boxes with convergent or divergent).

•
∑
an is

:::::::::::
absolutely

::::::::::::
convergent if and only if

∑
|an| is .

•
∑
an is

::::::::::::::
conditionally

:::::::::::
convergent if and only if∑

an is and
∑
|an| is .

•
∑
an is

::::::::::
divergent if and only if

∑
an is divergent.

0.6. State the Ratio and Root Tests for arbitrary-termed series
∑
an with −∞ < an <∞. Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or ρ = lim
n→∞

|an|
1
n .

• If then
∑
an converges absolutely.

• If then
∑
an diverges.

• If then the test is inconclusive.

0.7. State the Alternating Series Test (AST) & Alternating Series Estimation Theorem.

Let

(1) un ≥ 0 for each n ∈ N

(2) limn→∞ un =

(3) un un+1 for each n ∈ N.

Then

•

• and we can estimate (i.e., approximate) the infinite sum
∑∞

n=1(−1)nun by the finite sum∑N
k=1(−1)kuk and the error (i.e. remainder) satisfies∣∣∣∣∣

∞∑
k=1

(−1)kuk −
N∑
k=1

(−1)kuk

∣∣∣∣∣ ≤ .
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Power Series

Condsider a (formal) power series

h(x) =
∞∑
n=0

an (x− x0)n , (1.1)

with radius of convergence R ∈ [0,∞].

(Here x0 ∈ R is fixed and {an}∞n=0 is a fixed sequence of real numbers.)

Without any other further information on {an}∞n=0, answer the following questions.

•. The choices for the next 4 boxes are: AC, CC, DIVG, anything. Here,

AC stands for: always absolutely convergent

CC stands for: always conditionally convergent

DIVG stands for: is always divergent

anything stands for: can do anything, i.e., there are examples showing that it can be AC, CC, or DIVG.

(1) At the center x = x0, the power series in (1.1) .

(2) For x ∈ R such that |x− x0| < R, the power series in (1.1) .

(3) For x ∈ R such that |x− x0| > R, the power series in (1.1) .

(4) IfR > 0, then for the endpoints x = x0±R, the power series in (1.1) .

•. For this part, fill in the 7 boxes.

Let R > 0 and consider the function y = h(x) defined by the power series in (1.1).

(1) The function y = h(x) is
:::::::
always

::::::::::::::
differentiable on the interval

(make this interval as large as it can be, but still keeping the statement true).

Furthermore, if x is in this interval, then

h′(x) =
∞∑

n=

. (1.2)

What can you say about the radius of convergence of the power series in (1.2)?

(2) The function y = h(x)
::::::
always

:::::
has

:::
an

:::::::::::::::
antiderivative on the interval

(make this interval as large as it can be, but still keeping the statement true).

Futhermore, if α and β are in this interval, then∫ x=β

x=α

h(x) dx =
∞∑

n=

∣∣∣∣∣
x=β

x=α

.
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Taylor/Maclaurin Polynomials and Series

Let y = f(x) be a function with derivatives of all orders in an interval I containing x0.

Let y = PN(x) be the N th-order Taylor polynomial of y = f(x) about x0.

Let y = RN(x) be the N th-order Taylor remainder of y = f(x) about x0.

Let y = P∞(x) be the Taylor series of y = f(x) about x0.

Let cn be the nth Taylor coefficient of y = f(x) about x0.

a. The formula for cn is

cn =

b. In open form (i.e., with . . . and without a
∑

-sign)

PN(x) =

c. In closed form (i.e., with a
∑

-sign and without . . . )

PN(x) =

d. In open form (i.e., with . . . and without a
∑

-sign)

P∞(x) =

e. In closed form (i.e., with a
∑

-sign and without . . . )

P∞(x) =

f. We know that f(x) = PN(x) +RN(x). Taylor’s BIG Theorem tells us that, for each x ∈ I,

RN(x) = for some c between and .

g. A Maclaurin series is a Taylor series with the center specifically specified as x0 = .
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Commonly Used Taylor Series

I. Here, expansion refers to the power series expansion that is the Maclaurin series.

•. An expansion for y = ex is , which is valid precisely when x ∈ .

•. An expansion for y = cosx is , which is valid precisely when x ∈ .

•. An expansion for y = sinx is , which is valid precisely when x ∈ .

•. An expansion for y = 1
1−x is , which is valid precisely when x ∈ .

•. An expansion for y = ln(1+x) is , which is valid precisely when x ∈ .

•. An expansion for y = arctanx is , which is valid precisely when x ∈ .
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Parametric Curves

In this part, fill in the 4 boxes. Consider the curve C parameterized by

x = x (t)

y = y (t)

for a ≤ t ≤ b.

1) Express
dy

dx
in terms of derivatives with respect to t. Answer:

dy

dx
=

2) The tangent line to C when t = t0 is y = mx+ b where m is evaluated at t = t0.

3) Express
d2y

dx2
using derivatives with respect to t. Answer:

d2y

dx2
=

4) The arc length of C, expressed as on integral with respect to t, is

Arc Length =

Polar Coordinates

I. Here, CC stands for Cartresian coordinates while PC stands for polar coordinates.

•. A point with PC (r, θ) also has PC
(

, θ + 2π
)

as well as
(

, θ + π
)

.

•. A point P ∈ R2 with CC (x, y) and PC (r, θ) satisfies the following.

x = & y = & r2 = & =

{
y
x

if x 6= 0

DNE if x = 0 .

•. The period of f(θ) = cos(kθ) and of f(θ) = sin(kθ) is .

To sketch these graphs, we divide the period by and make the chart,

in order to detect the .

•. Now consider a sufficiently nice function r = f(θ) which determines a curve in the plane.
The the area bounded by polar curves r = f(θ) and the rays θ = α and θ = β is

Area =

∫ θ=β

θ=α

dθ .

The arc length of the polar curves r = f(θ) is

Arc Length =

∫ θ=β

θ=α

dθ .
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