Commonly Used Taylor Series

SERIES

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+\ldots \\
& =\sum_{n=0}^{\infty} x^{n}
\end{aligned}
$$

$$
e^{x} \quad=\quad 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

$$
=\quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$\cos x \quad=\quad 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots$

$$
=\quad \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

WHEN IS VALID/TRUE

NOTE THIS IS THE GEOMETRIC SERIES. JUST THINK OF x AS r
$x \in(-1,1)$

SO:

$$
\begin{aligned}
& \text { SO: } \\
& e=1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \\
& e^{(17 x)}=\sum_{n=0}^{\infty} \frac{(17 x)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{17^{n} x^{n}}{n!}
\end{aligned}
$$

$x \in \mathbb{R}$

NOTE $y=\cos x$ IS AN EVEN FUNCTION (I.E., $\cos (-x)=+\cos (x)$) AND THE TAYLOR SERIS OF $y=\cos x$ HAS ONLY EVEN POWERS.
$x \in \mathbb{R}$
$\sin x \quad=\quad x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\ldots$
$=\quad \sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{(2 n-1)!} \stackrel{\text { or }}{=} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad x \in \mathbb{R}$

$$
\begin{array}{rlrl}
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\ldots & \begin{array}{l}
\text { QUESTION: IS } y=\ln (1+x) \text { EVEN, } \\
\text { ODD, OR NEITHER? }
\end{array} \\
& =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{n}}{n} \stackrel{\text { or }}{=} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n} & x \in(-1,1] \\
\tan ^{-1} x & = & x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\ldots & \begin{array}{l}
\text { QUESTION: IS } y=\arctan (x) \text { EVEN }, \\
\text { ODD, OR NEITHER? }
\end{array} \\
& =\sum_{n=1}^{\infty}(-1)^{(n-1)} \frac{x^{2 n-1}}{2 n-1} \stackrel{\text { or }}{=} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} & x \in[-1,1]
\end{array}
$$

