SERIES		S	WHEN IS VALID/TRUE
$\frac{1}{1-x}$	=	$1 + x + x^2 + x^3 + x^4 + \dots$	NOTE THIS IS THE GEOMETRIC SERIES. JUST THINK OF x AS r
	=	$\sum_{n=0}^{\infty} x^n$	$x \in (-1, 1)$
e^x	=	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$	So: $e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$ $e^{(17x)} = \sum_{n=0}^{\infty} \frac{(17x)^n}{n!} = \sum_{n=0}^{\infty} \frac{17^n x^n}{n!}$
	=	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$x \in \mathbb{R}$
$\cos x$	=	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots$	NOTE $y = \cos x$ IS AN <u>EVEN</u> FUNCTION (I.E., $\cos(-x) = +\cos(x)$) AND THE TAYLOR SERIS OF $y = \cos x$ HAS ONLY <u>EVEN</u> POWERS.
	=	$\sum_{n=0}^{\infty} (-1)^n \ \frac{x^{2n}}{(2n)!}$	$x \in \mathbb{R}$
$\sin x$	=	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots$	NOTE $y = \sin x$ IS AN <u>ODD</u> FUNCTION (I.E., $\sin(-x) = -\sin(x)$) AND THE TAYLOR SERIS OF $y = \sin x$ HAS ONLY <u>ODD</u> POWERS.
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{(2n-1)!} \stackrel{\text{or}}{=} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$x \in \mathbb{R}$
$\ln\left(1+x\right)$	=	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$	QUESTION: IS $y = \ln(1 + x)$ EVEN, ODD, OR NEITHER?
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^n}{n} \stackrel{\text{or}}{=} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$	$x \in (-1, 1]$
$\tan^{-1} x$	=	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots$	QUESTION: IS $y = \arctan(x)$ EVEN, ODD, OR NEITHER?
	=	$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{x^{2n-1}}{2n-1} \stackrel{\text{or}}{=} \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	$x \in [-1, 1]$