0B. Volume of Revolutions. Let's say we revolve some region in the xy-plane around an axis of revolution so we get a solid of revolution. Next we want to find the volume of this solid of revolution.

- In parts a, fill in the blanks with: x or y.
- In parts b and c, fill in the blanks with a formula involving some of: 2, π, radius, $\text{radius}_{\text{big}}$, $\text{radius}_{\text{little}}$, average radius, height, and/or thickness.

▷ Disk/Washer Method. Let's find the volume of this solid of revolution using the disk or washer method.

a. If the axis of revolution is:
 - the x-axis, or parallel to the x-axis, then we partition the x-axis.
 - the y-axis, or parallel to the y-axis, then we partition the y-axis.

b. If we use the disk method, then the volume of a typical disk is:

\[
\pi \ (\text{radius})^2 \ (\text{height})
\]

If we use the washer method, then the volume of a typical washer is:

\[
\pi \ (\text{radius}_{\text{big}})^2 \ (\text{height}) - \pi \ (\text{radius}_{\text{little}})^2 \ (\text{height}) \quad \text{or} \quad \pi \ [\ (\text{radius}_{\text{big}})^2 - (\text{radius}_{\text{little}})^2 \] \ (\text{height})
\]

c. If we partition the z-axis, where z is either x or y, the $\Delta z = \text{height}$.

▷ Shell Method. Let's find the volume of this solid of revolution using the shell method.

a. If the axis of revolution is:
 - the x-axis, or parallel to the x-axis, then we partition the y-axis.
 - the y-axis, or parallel to the y-axis, then we partition the x-axis.

b. If we use the shell method, then the volume of a typical shell is:

\[
2\pi \ (\text{average radius}) \ (\text{height}) \ (\text{thickness}) \quad \text{or} \quad 2\pi \ (\text{radius}) \ (\text{height}) \ (\text{thickness})
\]

c. If we partition the z-axis, where z is either x or y, the $\Delta z = \text{thickness} \quad \text{or} \quad \text{radius}_{\text{big}} - \text{radius}_{\text{little}}$.

3