0B	• Volume of Revolutions. Let's say we revolve some region in the xy-plane around an axis of revolution so we get a solid of revolution. Next we want to find the volume of this solid of revolution.
	• In parts a, fill in the blanks with: x or y . • In parts b and c, fill in the blanks with a formula involving some of: 2, π , radius, radius _{big} , radius _{little} , average radius, height, and/or thickness.
▶.	<u>Disk/Washer Method</u> . Let's find the volume of this solid of revolution using the disk or washer method.
a.	If the axis of revolution is: • the x-axis, or parallel to the x-axis, then we partition thexaxis. • the y-axis, or parallel to the y-axis, then we partition theyaxis.
b.	If we use the disk method, then the volume of a typical disk is:
	$\frac{\pi \ ({\rm radius})^2 \ ({\rm height})}{}$. If we use the ${\bf washer \ method},$ then the volume of a typical washer is:
	$\pi \; (\mathrm{radius_{big}})^2 \; (\mathrm{height}) \; - \; \pi \; (\mathrm{radius_{little}})^2 \; (\mathrm{height}) \stackrel{\mathrm{or}}{=} \; \; \pi \; \left[(\mathrm{radius_{big}})^2 - (\mathrm{radius_{little}})^2 \right] \; (\mathrm{height}) .$
c.	If we partition the z-axis, where z is either x or y, the $\Delta z = \underline{\qquad}$ height .
▶.	Shell Method. Let's find the volume of this solid of revolution using the shell method.
a.	 If the axis of revolution is: the x-axis, or parallel to the x-axis, then we partition the y-axis. the y-axis, or parallel to the y-axis, then we partition the x-axis.
b.	If we use the shell method , then the volume of a typical shell is:
	2π (average radius) (height) (thickness) $\stackrel{\text{or}}{=} 2\pi$ (radius) (height) (thickness)
c.	If we partition the z-axis, where z is either x or y, the $\Delta z = $ thickness $\stackrel{\text{or}}{=}$ radius _{big} - radius _{little} .