| • In parts a, fill in the blanks with: x or y . • In parts b and c, fill in the blanks with a formula involving some of: 2 , π , radius, radius _{big} , radius _{little} , average radius, height, and/or thickness. | |---| | <u>Disk/Washer Method</u> . Let's find the volume of this solid of revolution using the disk or washer method | | If the axis of revolution is: • the x-axis, or parallel to the x-axis, then we partition theaxis. • the y-axis, or parallel to the y-axis, then we partition theaxis. | | If we use the disk method , then the volume of a typical disk is: | | If we use the washer method, then the volume of a typical washer is: | | If we partition the z-axis, where z is either x or y, the Δz is the | | Shell Method. Let's find the volume of this solid of revolution using the shell method. | | If the axis of revolution is: • the x-axis, or parallel to the x-axis, then we partition theaxis. • the y-axis, or parallel to the y-axis, then we partition theaxis. | | If we use the shell method , then the volume of a typical shell is: |