INTEGRAL TEST

RECALL

If $\{x_n\}_{n\in\mathbb{N}}$ is a non-decreasing sequence (i.e., $x_n \leq x_{n+1}$), then either

• $\{x_n\}_{n\in\mathbb{N}}$ is bounded above, in which case $\lim_{n\to\infty} x_n$ exists

or

• $\{x_n\}_{n\in\mathbb{N}}$ is not bounded above, in which case $\lim_{n\to\infty} x_n = \infty$.

POSITIVE-TERM SERIES

<u>Definition</u>: $\sum a_n$ is a positive-term series if $a_n \ge 0$ for each n.

Explore: Let $\sum a_n$ be a positive-term series.

- (1) Consider its sequence of partial sums $\{S_N\}_{N\in\mathbb{N}}$ where $S_N = a_1 + a_2 + \ldots + a_N$.
- (2) Recall that $\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} S_N$.
- $(3) \ 0 \le a_n \ \text{ for each } n \in \mathbb{N} \implies S_N \le S_{N+1} \text{ for each } N \in \mathbb{N} \ .$
- (4) So $\{S_N\}_{N \in \mathbb{N}}$ is a non-decreasing sequence.

So either:

• $\{S_N\}_{N\in\mathbb{N}}$ is bounded above and so $\lim_{N\to\infty} S_N$ exists and so $\sum a_n$ converges

or

• $\{S_N\}_{N\in\mathbb{N}}$ is not bounded above and so $\lim_{N\to\infty} S_N = \infty = \sum_{n=1}^{\infty} a_n$ and so $\sum a_n$ diverges.

TODAY'S GOAL

Examine the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \longrightarrow \begin{cases} \text{converges} & \text{if } p > 1\\ \text{diverges} & \text{if } p \le 1 \end{cases}$$

When p = 1, the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n}$ is also called the harmonic series.

1

- Let $\sum a_n$ be a positive-term series.
- Find a function f(x) such that
 - (1) $f(n) = a_n$ for $n \in \mathbb{N}$
 - (2) f is decreasing for $x \ge 1$ (often check this by showing f' < 0)
 - (3) f is continuous for $x \ge 1$
 - (4) so $f(x) \ge 0$ for $x \ge 1$.

Then the series $\sum_{n=1}^{\infty} a_n$ and the improper integral $\int_1^{\infty} f(x) dx$ either:

- (1) both converge (to different numbers most likely)
- (2) both diverge.

This is because $\{\sum_{n=1}^{N} a_n\}_{N \in \mathbb{N}}$ and $\{\int_1^N f(x) dx\}_{N \in \mathbb{N}}$ are both non-decreasing sequences and so each has the choice of either (converging to some finite number) <u>or</u> (diverging to ∞). But

$$a_2 + a_3 + \ldots + a_N \leq \int_1^N f(x) \, dx \leq a_1 + a_2 + \ldots + a_{N-1}$$

Now take the limit as $N \to \infty$ to see that

$$\sum_{n=2}^{\infty} a_n \leq \int_1^{\infty} f(x) \, dx \leq \sum_{n=1}^{\infty} a_n \, .$$