SERIOUS SERIES’ PROBLEMS – HINTS

abs. conv. – absolutely convergent
cond. conv. – conditionally convergent
divg. – divergent

AST – Alternating Series Test
CT – Comparison Test
LCT – Limit Comparison Test

Recall that often there is more than one way to determine the behavior of a series.

(1) divg. – p-series with $p = \frac{1}{2}$
(2) cond. conv. – AST & p-series with $p = \frac{1}{2}$
(3) cond. conv. – AST & CT to $\frac{1}{n+1}$
(4) abs. conv. – LCT to $\frac{1}{n^2}$
(5) abs. conv. – ratio test $\rho = 0$
(6) abs. conv. – ratio test $\rho = 0$
(7) abs. conv. – integral test
(8) divg. – n^{th}-term test for divergence
(9) abs. conv. – root test $\rho = 0$
(10) abs. conv. – LCT to $\left(\frac{1}{n}\right)^{\frac{3}{2}}$
(11) abs. conv. – CT to $\frac{1}{(3n-2)^n}$ & do the root test to $\frac{1}{(3n-2)^n}$
(12) abs. conv. – CT to $\frac{1}{n^n}$. note that $|\arctan n| \leq \frac{\pi}{2}$.
(13) abs. conv. – CT to $\left(\frac{1}{n}\right)^{\frac{3}{2}}$. note that
\[
\ln (n!) = \ln (1 \cdot 2 \cdots n) = \ln 1 + \ln 2 + \ldots \ln n \leq n \ln n
\]
and so for big n
\[
\frac{\ln(n!)}{n^3} \leq \frac{n \ln n}{n^3} = \frac{\ln n}{n^2} \leq \frac{n^{\frac{3}{2}}}{n^2} = \frac{1}{n^{\frac{1}{2}}}
\]
(14) abs. conv. – ratio test $\rho = 0$
(15) divg. – n^{th}-term test for divergence. note that
\[
\left(\frac{n}{n+1}\right)^n = \left[\left(\frac{n+1}{n}\right)^n\right]^{-1} = \left[\left(1 + \frac{1}{n}\right)^n\right]^{-1} \rightarrow [e^1]^{-1} = e^{-1} \neq 0.
\]