Math 142
 In-Class Quiz from Thursday 2/9/06
 Due at beginning of class on Monday 2/13/06

The class performance on Problem 1 from Exam 1 was absolutely unacceptable: the average score was only 5.6 and the median was only 5 (out of 10 points). You were told that the first problem would be fill-in the blanks from the formulas on the Math 141 Handout that I handed out the first day of class. Thus here is a quiz to reinforce some of formulas.

Using only
(i) simple $u-d u$ substitution
(ii) basic trig identities such as

$$
\begin{equation*}
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x} \tag{A}
\end{equation*}
$$

(iii) the fact that $y=e^{x}$ and $y=\ln x$ are inverse functions of eachother and so

$$
\begin{equation*}
a^{x}=e^{\ln \left(a^{x}\right)}=e^{(x \ln a)} \tag{B}
\end{equation*}
$$

where a is a constant with $a>0$ and $a \neq 1$
(iv) If $z>0$ then

$$
\begin{equation*}
\ln \frac{1}{z}=\ln 1-\ln z=-\ln z \tag{C}
\end{equation*}
$$

derive the formulas listed in (1) through (5) below. These formulas are from your Math 141 Handout. Derive means to show that they easily follow from (i) through (iv) above.

So if you ever forget the below formulas on an exam again, you will know how to easily and quickly derive them.
(1) If a is a constant and $a>0$ but $a \neq 1$, then

$$
\int a^{x} d x=\frac{a^{x}}{\ln a}+C
$$

Hint: use (B) above (more than once) and let $u=x \ln a$.
(2)

$$
\begin{aligned}
& \int \tan x d x=-\ln |\cos x|+C \\
& \int \tan x d x=\ln |\sec x|+C
\end{aligned}
$$

Hints: use (A) and (C) above and let $u=\cos x$.

$$
\begin{align*}
& \int \cot x d x=\ln |\sin x|+C \tag{3}\\
& \int \cot x d x=-\ln |\csc x|+C
\end{align*}
$$

Hints: use (A) and (C) above and let $u=\sin x$.

$$
\begin{align*}
& \int \sec x d x=\ln |\sec x+\tan x|+C \tag{4}\\
& \int \sec x d x=-\ln |\sec x-\tan x|+C \\
& \int \sec x d x=-\ln |\tan x-\sec x|+C
\end{align*}
$$

Hints.
First multiply the integrand through by the number one, written in a clever way:

$$
\frac{\sec x+\tan x}{\sec x+\tan x} \quad \text { or } \quad \frac{\sec x-\tan x}{\sec x-\tan x} \quad \text { or } \quad \frac{\tan x-\sec x}{\tan x-\sec x} .
$$

Then let u be either:

$$
\sec x+\tan x \quad \text { or } \quad \sec x-\tan x \quad \text { or } \quad \tan x-\sec x .
$$

(5)

$$
\begin{aligned}
& \int \csc x d x=\ln |\csc x-\cot x|+C \\
& \int \csc x d x=\ln |\cot x-\csc x|+C \\
& \int \csc x d x=-\ln |\csc x+\cot x|+C
\end{aligned}
$$

Hints.
First multiply the integrand through by the number one, written in a clever way:

$$
\frac{\csc x-\cot x}{\csc x-\cot x} \quad \text { or } \quad \frac{\cot x-\csc x}{\cot x-\csc x} \quad \text { or } \quad \frac{\csc x+\cot x}{\csc x+\cot x} .
$$

Then let u be either:

$$
\csc x-\cot x \quad \text { or } \quad \cot x-\csc x \quad \text { or } \quad \csc x+\cot x .
$$

