GEOMETRIC SERIES: WITH RATIO r (AND $c \neq 0$)

$$\sum_{n=0}^{\infty} c \, r^n = c \left(1 + r + r^2 + r^3 + r^4 + \dots \right) = \begin{cases} \text{converges} & |r| < 1 \\ \text{diverges} & |r| \geqslant 1 \end{cases}$$

Since
$$\sum_{n=0}^{N} r^n \equiv s_N = \frac{1 - r^{N+1}}{1 - r}$$

p-SERIES

$$\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)^{p} = \sum_{n=1}^{\infty} \frac{1}{n^{p}} = 1 + \left(\frac{1}{2}\right)^{p} + \left(\frac{1}{3}\right)^{p} + \left(\frac{1}{4}\right)^{p} + \dots = \begin{cases} \text{converges } p > 1 \\ \text{diverges } p \leqslant 1 \end{cases}$$

Show this via Integral Test. If p = 1, it's called the <u>harmonic series</u>

$n^{ m th}$ -Term test for divergence

The Test: If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ DNE, then $\sum a_n$ diverges.

Because: If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$

Warning: If $\lim_{n\to\infty} a_n = 0$, then it is possible that $\sum a_n$ converges and it is possible that $\sum a_n$ diverges.

Remark: The n^{th} can show divergence but can NOT show convergence.

DEFINITIONS

 $\sum a_n$ is <u>absolutely convergent</u>

 $\mathop{\updownarrow}$

 $\sum |a_n|$ converges

is <u>conditionally convergent</u> \iff

is <u>divergent</u>

 $\sum |a_n|$ diverges

 $\sum a_n$ converges \rfloor

 $\left[\begin{array}{cc} \sum a_n & \text{diverges} \end{array}\right]$

BIG THEOREM

Theorem:

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

So we get for free:

If $\sum a_n$ diverges, then $\sum |a_n|$ diverges.

MUTUALLY EXCLUSIVE AND EXHAUSTIVE POSSIBILITIES

 $\sum a_n$ is absolutely convergent

is conditionally convergent

 $\ \ \, \mathop{\big)}^{}$

 $\sum |a_n|$ converges

 $\xrightarrow{\text{implies}}$

 $\sum a_n$

 $\operatorname{converges}$

AND \sum

 $\sum a_n$ converges

 $\sum a_n$ is divergent

 \downarrow

 $\sum |a_n|$

diverges

 \downarrow

 $\sum a_n$ diverges

 $\xrightarrow{\text{implies}} \sum |a_n| \text{ diverges}$

more than one test will work! For some of the tests, we need to find the appropriate $\sum b_n$, which is usually a well-known series (like Solution: we apply one of the below Tests that will give us the answer. Which one ... well, pattern recognition time. Sometimes PROBLEM: we need to figure out if an infinite series $\sum a_n$ is: absolutely convergent, conditionally convergent, or divergent.

	Alternating Series Test (AST)
ALTERNATING SERIES TEST $\sum (-1)^n u_n$ where $u_n > 0 \ \forall n \in \mathbb{N}$, in other words $a_n = (-1)^n u_n$ and $u_n > 0$	$\sum a_n \; = \;$
$\rho > 1 \implies \sum a_n$ diverges $\rho = 1 \implies \text{test is inconclusive}$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Let $\rho = \lim_{n \to \infty} \sqrt[n]{a_n} \stackrel{\text{note}}{=} \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$.	Root Test
$\rho = 1 \implies \text{test is inconclusive}$	
$\rho > 1 \implies \sum a_n \text{ diverges}$	
$\rho < 1 \implies \sum a_n \text{ converges}$	
Let $\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.	Ratio Test
If $L = \infty$, then $[\sum b_n \text{ divg.} \implies \sum a_n \text{ divg.}]$ (you do not have to memorize this one)	
If $L=0$, then $\sum b_n$ conv. $\implies \sum a_n$ conv. \pmod (you do not have to memorize this one)	
If $0 < L < \infty$, then $[\sum a_n \text{ conv.} \iff \sum b_n \text{ conv.}]$ (you DO need to memorize this one)	(LCT)
Let $b_n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$.	Limit Comparison Test
$[\ 0\leqslant b_n\leqslant a_n\ \forall n\geqslant N_0\ \&\ \sum b_n\ { m divg.}\]\Longrightarrow\ [\ \sum a_n\ { m divg.}\]$	(CT)
$[\ 0\leqslant a_n\leqslant b_n\ orall n\geqslant N_0\ \&\ \sum b_n\ { m conv.}\]\Longrightarrow\ [\ \sum a_n\ { m conv.}\]$	Comparison Test
Then $\left[\sum a_n \text{ converges } \iff \int_1^\infty f(x) dx \text{ converges }\right]$.	
Let $f: [1, \infty) \to \mathbb{R}$ be continuous, positive, and nonincreasing function with $f(n) = a_n \forall n \in \mathbb{N}$.	Integral Test
$\sum a_n \text{ converge } \iff \{s_N\}_{N=1}^{\infty} \text{ is bounded above } \qquad (\text{since } a_n \geqslant 0 \iff s_n \nearrow)$	Key Idea
Positive-Termed Series Tests $\sum a_n$ where $a_n\geqslant 0 \ \forall n\in\mathbb{N}$	
STATEMENT OF TEST	NAME
that we know whether it converges or diverges.	a geometric series or p-series)