Series Flow Chart

absolutely convergent

def $\sum |a_n| \text{ conv.}$

 $\overset{\mathrm{implies}}{\Longrightarrow}$

 $\sum a_n \text{ conv.}$

 a_n

conditionally convergent

 \oint def $\sum |a_n| \text{ divg.}$

 $\sum a_n \text{ conv.}$

and

divergent

def

 $\sum a_n$ divg.

 $\overset{\mathrm{implies}}{\Longrightarrow}$

 $\sum |a_n| \text{ divg.}$

if YES \Downarrow

integral test, CT/LCT, ratio/root test. Since $|a_n| \ge 0$, use a positive term test: Does $\sum |a_n|$ conv.?

#NO $\sum |a_n| \text{ divg. so}$ $\sum a_n \text{ is either}$ or divg. cond. conv.

 $| \max_{\Rightarrow} | \frac{\lim_{n \to \infty} a_n = 0?}{\text{or}} |$ try $\lim_{n \to \infty} |a_n| = 0?$ equivalently

if NO

 $\sum a_n$ divg. by n^{th} term test for divergence

 $\sum a_n$ is abs. conv.

i.e., does $\sum a_n = \sum (-1)^n u_n$ where $u_n > 0$ i.e., does $a_n = (-1)^n u_n$ for some $u_n > 0$? Is $\sum a_n$ an alternating series,

if YES ↓

if YES ↓ try AST

if YES ↓

if NO

telescoping series? Is $\sum a_n$ is a

if YES

and then find $\lim_{N\to\infty} s_N$

find the partial sums $s_N = \sum_{n=1}^{\infty} a_n$

i.e., is $u_{n+1} < u_n$?

i.e, are the u_n 's decreasing,

Does $\sum a_n \stackrel{\text{i.e.}}{=} \sum (-1)^n u_n$ satisfy the 1st condition of the AST

i.e, does $\lim_{n\to\infty} u_n = 0$? Does $\sum a_n \stackrel{\text{\tiny i.e.}}{=} \sum (-1)^n u_n$ satisfy the 2nd condition of the AST

(you most likely already checked this at (*) above since $|a_n| = u_n$)

if YES ↓

 $\sum a_n$ $\stackrel{\text{i.e.}}{=} \sum (-1)^n u_n \text{ cond. conv.}$

if $\sum |a_n| \operatorname{divg}$.

 $\sum_{n} a_n \stackrel{\text{i.e.}}{=} \sum_{n} (-1)^n u_n \text{ converges}$ by the AST

if and only if Useful: remember, in general, $\lim_{n\to\infty} |a_n| = 0$ $\lim_{n\to\infty} a_n = 0$ (**)