Indeterminate Forms - L'Hôpital's Rule

At $x = u$,	has the <u>indeterminate form</u>	if $\lim_{x \to u} f(x) =$	and $\lim_{x \to u} g(x) =$	
(1)	$rac{f(x)}{g(x)}$	$\frac{0}{0}$	0	0
(2)	$rac{f(x)}{g(x)}$	$\frac{\infty}{\infty}$	∞	∞
(3)	f(x) + g(x)	$0 \cdot \infty$	0	∞
(4)	f(x) - g(x)	$\infty - \infty$	∞	∞
(5)	$[f(x)]^{g(x)}$	00	0	0
(6)	$[f(x)]^{g(x)}$	∞^0	∞	0
(7)	$[f(x)]^{g(x)}$	1^{∞}	1	∞

HERE: u stands for any of the symbols $a, a^-, a^+, -\infty, +\infty$.

L'Hôpital's Rule

(1) and (2)

If:

• $\frac{f(x)}{g(x)}$ has the interdeterminate form $\begin{bmatrix} 0\\ 0 \end{bmatrix}$ or $\begin{bmatrix} \infty\\ \infty \end{bmatrix}$ at u

and

•
$$\lim_{x \to u} \frac{f'(x)}{g'(x)}$$
 exists (i.e. this limit is a finite number or $-\infty$ or ∞)

then

$$\lim_{x \to u} \frac{f(x)}{g(x)} = \lim_{x \to u} \frac{f'(x)}{g'(x)}$$
(3)

If $f(x) \cdot g(x)$ has the interdeterminate form $0 \cdot \infty$ at u, then rewrite:

$$f(x) \cdot g(x) = \frac{f(x)}{1/g(x)}$$
, which has the interdeterminate form $\boxed{\frac{0}{0}}$ at u

or

$$f(x) \cdot g(x) = \frac{g(x)}{1/f(x)}$$
, which has the interdeterminate form $\boxed{\frac{\infty}{\infty}}$ at u

and then apply L'Hôpital's Rule.

(4)

If f(x) - g(x) has the interdeterminate form $\boxed{\infty - \infty}$ at u, then use algebraic manipulation to convert f(x) - g(x)into a form of the type $\boxed{\frac{0}{0}}$ or $\boxed{\frac{\infty}{\infty}}$ and then apply L'Hôpital's Rule. (5)

If $[f(x)]^{g(x)}$ has the interdeterminate form 0^0 at u, then follow these steps: Let

$$y = [f(x)]^{g(x)}$$

So

$$\ln y = \ln \left(\left[f(x) \right]^{g(x)} \right) .$$

Next, simplify

$$\ln y = [g(x)] \cdot \ln [f(x)]$$

Note that $\ln y = [g(x)] \cdot \ln [f(x)]$ has the interdeterminate form $0 \cdot -\infty$ at u. Using an appropriate above method (i.e. (3)), evaluate

$$\lim_{x \to u} \ln y \equiv L$$

Conclude

$$\lim_{x \to u} \ln [f(x)]^{g(x)} = L \implies \lim_{x \to u} [f(x)]^{g(x)} = e^L.$$
(6) and (7)

If $[f(x)]^{g(x)}$ has the interdeterminate form ∞^0 or 1^∞ , then proceed similarly as in (5). Note that $\ln y = [g(x)] \cdot \ln [f(x)]$ will have the interdeterminate form

(6) $0 \cdot \infty$ at u

(7)
$$\infty \cdot 0$$
 at u .