$$
\text { Fall } 98 \quad \text { Final Exam } \quad 12 / 07 / 98
$$

NAME: \qquad

INSTRUCTIONS:

1. To receive credit you must:
a. WORK IN A LOGICAL FASHION, SHOW ALL YOUR WORK, INDICATE YOUR REASONING.
b. when applicable put your answer on/in the line/box provided
c. if no such line/box is provided, then box your answer
d. if you use your calculator, give an explanation of what you did on it.
2. There are 18 pages to this exam: a total of 15 equally weighted problems.

Check that your copy of the exam has all of the pages.
3. During this test, do not leave your seat.

If you have a question, raise your hand.
When you finish: turn your exam over, put your pencil down, raise your hand.
4. This closed book/notes exam covers (from Calculus, by Varberg and Purcell) :
$\S 7.1-7.7,8.1-8.6,9.1-9.4,10.1-10.3,11.1-11.8,12.6-12.8$.

Problem Source:

1. Fall 1998 Exam 1 \# 1c
2. Fall 1998 Exam $1 \# 3$, simplified
3. Fall 1998 Exam $2 \#$ 1a
4. Fall 1998 Exam 2 \# 1c
5. Fall 1998 Exam 2 \# 2a, simplified
6. Fall 1998 Exam $2 \# 4 c$
7. Fall 1998 Exam 3 \# 3d
8. Fall 1998 Exam 3 \# 3b
9. Fall 1998 Exam $4 \# 1 a$
10. Example from class
11. Similar to homework problems $\S 11.7$ \# 1-8 and examples from class
12. Similar to examples from class
13. Fall 1998 Exam $2 \# 5$
14. Fall 1998 Exam 3 \# 4
15. An example from class: § 8.4 \# 85
bonus. the quote of our class!

BONUS:

Any fool can \qquad , the point is to \qquad .
\qquad Einstein

1. $\frac{d}{d x} e^{\tan x}=$
2. $\frac{d}{d x}(\ln x)^{2 x+3}=$

HINT: of the form $\frac{d}{d x}\left([f(x)]^{g(x)}\right)$.
3. $\int \sin ^{3}(2 x) d x=\square+\mathrm{C}$
4. $\int \frac{d x}{\left(16+x^{2}\right)^{3 / 2}}=$

Your answer should NOT contain inverse trig functions ... convert back .
5. $\int \ln x d x=\square+\mathrm{C}$
6. $\int_{-\infty}^{\infty} \frac{x}{x^{2}+1} d x=$
7. $\lim _{n \rightarrow \infty}(-1)^{n} \frac{100 n}{n^{3 / 2}+4}=$
8. $\lim _{n \rightarrow \infty}(-1)^{n} \frac{6 n-5}{5 n+1}=$
9. $\sum_{n=7}^{\infty}(-1)^{n} \frac{n}{1+n^{2}}$
\qquad absolutely convergent conditionally convergent divergent
10. Indicate precisely where the series

$$
\sum_{n=1}^{\infty} \frac{(x+5)^{n}}{n}
$$

is absolutely convergent, conditionally convergent, and divergent (a diagram as we did in class suffices).
11. Using the Geometric Series, find a power series representation for

$$
f(x)=\frac{7}{9+4 x^{2}}
$$

and specify precisely when (i.e., for what values of x 's?) this representation is valid.
12. Grandpa and Grandma Puffo are out for their morning walk over a time period of $0 \leqslant \theta \leqslant 2 \pi$. Grandpa is walking along a path given by $r=\sin \theta$ while Grandma is walking along a path given by $r=\sqrt{\left(3 \cos ^{2} \theta\right)}$.
12a. Fill in the below chart, similar to as we did in class.

θ	$r=\sin \theta$	$r=\sqrt{\left(3 \cos ^{2} \theta\right)}$
$0 \rightarrow \pi / 2$	$\xrightarrow{1}$	$\xrightarrow{5}$
$\pi / 2 \rightarrow \pi$	$\xrightarrow{2}$	$\xrightarrow{6}$
$\pi \rightarrow 3 \pi / 2$	$\xrightarrow{3}$	$\xrightarrow{7}$
$3 \pi / 2 \rightarrow 2 \pi$	$\xrightarrow{4}$	$\xrightarrow{8}$

12b. Sketch below the curves of Grandpa and Grandma's walking paths, indicating parts $1-8$, as we did in class

12c. GIVE POINTS IN POLAR FORM: (r, θ).
Grandpa and Grandma Puffo will pass eachother, and be able to give eachother
HIGH-FIVES, at time/times $\theta=$ \qquad .

At this time/these times, they will be at the point/points \qquad .

Grandpa and Grandma Puffo will pass through the same place, but not at the same time (so they will not be able to give eachother HIGH-FIVES), at point/points
\qquad
13. Let $f:[0,14] \rightarrow \mathbb{R}$ and $g:[0,14] \rightarrow \mathbb{R}$ be two continuous functions, each differentiable on $(0,14)$. Also $g^{\prime}(x) \neq 0$ for each $x \in(0,14)$. Cauchy Puffetto is moving along the curve \mathcal{C} show below in such a way that his position at time t, where $0 \leqslant t \leqslant 14$, is (x, y) where $x=g(t)$ and $y=f(t)$. Estimate all points c, where $c \in(0,14)$, for which

$$
\frac{f(14)-f(0)}{g(14)-g(0)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} .
$$

ESTIMATE(S) ON THE C('S): \qquad
Clearly geometrically explain your reasoning! One point for the correct estimate(s) and 4 points for your explanation.

More space for \# 13:
14. Formally show (i.e., by using the definition of convergence: page 514) that

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

Hints: I got you started, just fill in the missing parts. You might find helpful the observation that $\frac{2}{n^{3}+1}<\frac{2}{n^{3}}$.
Proof.
Recall that by definition of convergence of a sequence,

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

if and only if for each $\varepsilon>0$ there exists a number $N_{\varepsilon}>0$ such that if $n \geqslant N_{\varepsilon}$ then

$$
\left|\frac{2 n^{3}}{n^{3}+1}-2\right|<\varepsilon
$$

Let an arbitrary $\varepsilon>0$ be given. Let $N_{\varepsilon}=$ \qquad . Then $n \geqslant N_{\varepsilon}$ implies that

$$
\left|\frac{2 n^{3}}{n^{3}+1}-2\right|=
$$

Thus, by the definition of convergence of a sequence,

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

15. Let \mathbb{N} be the set of natural numbers, i.e.

$$
\mathbb{N} \stackrel{\text { def }}{=}\{1,2,3, \ldots\}
$$

Consider a function

$$
f:[-\pi, \pi] \rightarrow \mathbb{R}
$$

whose derivative

$$
f^{\prime}:[-\pi, \pi] \rightarrow \mathbb{R}
$$

is continuous. For $n \in \mathbb{N}$, defined the $n^{\text {th }}$ Fourier coefficient of f to be

$$
a_{n} \stackrel{\text { def }}{=} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Show that $\lim _{n \rightarrow \infty} a_{n}=0$. Hint: integration by parts.

More space for \# 15:

