MARK BOX		
PROBLEM	POINTS	
1 a-d	20	
2	5	
3	5	
bonus	2	
Total	30	
$\%$	100	

INSTRUCTIONS:

1. To receive credit you must:
a. WORK IN A LOGICAL FASHION, SHOW ALL YOUR WORK, INDICATE YOUR REASONING.
b. when applicable put your answer on/in the line/box provided
c. if no such line/box is provided, then box your answer
d. if you use your calculator, give an explanation of what you did on it.
2. The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
3. During this test, do not leave your seat.

If you have a question, raise your hand.
When you finish: turn your exam over, put your pencil down, raise your hand.
4. This closed book/notes quiz covers (from Calculus, by Varberg and Purcell) : § 11.2 - 11.5 .

Problem Source:

1. Look at problems: § $11.9 \# 19 \& 25$ and $\S 11.4$ \# $15 \& 42$ a (with $(-1)^{n}$ added for fun)
2. Look at problem § 11.2 \# 20
3. Look at problem § $11.5 \# 32$
bonus. just for fun
4. Determine whether each of the following 4 series is absolutely convergent, conditionally convergent, or divergent. CLEARLY explain your reasoning and indicate the test(s) used. No credit will be given for work that does not make sense to us!

1a. $\sum_{n=7}^{\infty}(-1)^{n} \frac{n}{1+n^{2}}$
\qquad absolutely convergent conditionally convergent divergent

1b. $\sum_{n=7}^{\infty}(-1)^{n} \frac{n^{2}}{n!}$
___ absolutely convergent
___ conditionally convergent divergent

1c. $\sum_{n=7}^{\infty}\left(\frac{-1}{\ln n}\right)^{n}$
___ absolutely convergent
___ conditionally convergent divergent

1d. $\sum_{n=7}^{\infty}(-1)^{n} \frac{n+1}{10 n+12}$
\qquad absolutely convergent conditionally convergent divergent
2. Express the number

$$
0.3671717171 \ldots . . .
$$

as an infinite series and as a ratio of two integers.
3. Give an example of two series $\sum a_{n}$ and $\sum b_{n}$, both convergent, such that $\sum a_{n} b_{n}$ diverges. Clearly explain your reasoning.

BONUS. Make up a Challenging series and then determine if it is absolutely convergent, conditionally convergent, or divergent.
$\sum_{n=7}^{\infty}$
\qquad absolutely convergent conditionally convergent divergent

