MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{e}$	25	
$2 \mathrm{a}-\mathrm{c}$	15	
$3 \mathrm{a}-\mathrm{f}$	30	
4	5	
Total	75	
$\%$	100	

$$
\text { Fall } 98 \quad \text { Exam } 3 \quad 11 / 17 / 98
$$

NAME: \qquad

INSTRUCTIONS:

1. To receive credit you must:
a. WORK IN A LOGICAL FASHION, SHOW ALL YOUR WORK, INDICATE YOUR REASONING.
b. when applicable put your answer on/in the line/box provided
c. if no such line/box is provided, then box your answer
d. if you use your calculator, give an explanation of what you did on it.
2. The MARK BOX indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
3. Do not discuss this exam with anyone other than yourself.
4. This OPEN book/notes test covers (from Calculus, by Varberg and Purcell) : § 10.1 - 10.3, 11.1 .

Problem Source:

1. Inspired by look at problem § 10.6, Sample Test Problem \# 8.
2. Similar to a Puffo problem from class.
3. Taken from my high-school calculus textbook.
4. Similar to an example from class and Example 1 from § 11.1.

BONUS: The first line of The Carolinian Creed is:
I will practice \qquad and \qquad integrity.

1. Numerical Integration with the function $f(x)=\ln x$. Let's approximate $\int_{0.8}^{1.2} \ln x d x$.

1a. Fill in the below chart.

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$\frac{f^{(n)}(1)}{n!}$
0	$\ln (x)$	0	0

1

2

3

4

5

1b. From the pattern in the chart, I see that for $n \geqslant 1$,

$$
f^{(n)}(x)=\square
$$

and

$$
\frac{f^{(n)}(1)}{n!}=\square
$$

Hint: simplify the above as much as possible, it will make your life easier later on.

1c. For $n \geqslant 1$, the Taylor polynomial P_{n} of order n about $a=1$ for $f(x)=\ln x$ is:

$$
P_{n}(x)=\longleftarrow(x-1)^{1}+\ldots(x-1)^{2}+\ldots(x-1)^{3}+\ldots+\ldots(x-1)^{n}
$$

and the order n Remainder Term is:

$$
\ln x-P_{n}(x) \stackrel{\text { def }}{=} R_{n}(x)=
$$

where c is between \qquad and \qquad .

1d. From 1c, we see that

$$
\begin{equation*}
\int_{0.8}^{1.2} \ln x d x \approx \int_{0.8}^{1.2} P_{n}(x) d x \tag{1d.1}
\end{equation*}
$$

where an upper bound on the error of approximation is:

$$
\begin{equation*}
\left|\int_{0.8}^{1.2} R_{n}(x) d x\right| \tag{1~d.2}
\end{equation*}
$$

Find n (as small as you can get it) so that the formula in 1d. 2 insures that the approximation in $\mathbf{1 d .} \mathbf{1}$ is accurate to 4 decimal places.
Hint: $\int_{0.8}^{1.2}|x-1|^{n+1} d x=2 \int_{1}^{1.2}(x-1)^{n+1} d x$.

1e. Using a Talyor polynomial, approximate $\int_{0.8}^{1.2} \ln x d x$ to 4 decimal places. $\int_{0.8}^{1.2} \ln x d x \approx$
2. Mr. Puffo is moving along the real number line. He observes his velocity at some key times as:

t	0	2	4	6	8
$v(t)$	0	6	8	12	10

The units are minutes and feet.
2a. Sketch a graph of a possible velocity function for Mr. Puffo. Do do forget to label your axes.

2b. The Trapezoidal Rule (with $n=4$) gives that Mr. Puffo travel approximately feet in these 8 minutes.

2c. The Parabolic Rule (with $n=4$) gives that Mr. Puffo travel approximately
\qquad feet in these 8 minutes.
3. Determine if the limits of the following sequences exist. If your answer is DNE, explain why.
3a. $\lim _{n \rightarrow \infty} \frac{6 n-5}{5 n+1}=$

3b. $\lim _{n \rightarrow \infty}(-1)^{n} \frac{6 n-5}{5 n+1}=$

3c. $\lim _{n \rightarrow \infty} \frac{100 n}{n^{3 / 2}+4}=$

3d. $\lim _{n \rightarrow \infty}(-1)^{n} \frac{100 n}{n^{3 / 2}+4}=$

3e. $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=$

3f. $\lim _{n \rightarrow \infty} \sin (n \pi)=$
4. Formally show (i.e., by using the definition of convergence: page 514) that

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

Hints: I got you started, just fill in the missing parts. You might find helpful the observation that $\frac{2}{n^{3}+1}<\frac{2}{n^{3}}$.
Proof.
Recall that by definition of convergence of a sequence,

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

if and only if for each $\varepsilon>0$ there exists a number $N_{\varepsilon}>0$ such that if $n \geqslant N_{\varepsilon}$ then

$$
\left|\frac{2 n^{3}}{n^{3}+1}-2\right|<\varepsilon
$$

Let an arbitrary $\varepsilon>0$ be given. Let $N_{\varepsilon}=$ \qquad . Then $n \geqslant N_{\varepsilon}$ implies that

$$
\left|\frac{2 n^{3}}{n^{3}+1}-2\right|=
$$

Thus, by the definition of convergence of a sequence,

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}}{n^{3}+1}=2
$$

