Instructions:

(1) Expect for problem 1, to receive credit you must work in a logical fashion, **SHOW ALL YOUR WORK, INDICATE YOUR REASONING**, and when applicable put your answer on the line (or in the box) provided.

(2) The “Mark Box” indicates the problems along with their points. Check that your copy of the exam has all of the problems.

(3) During this test, do not leave your seat. Raise your hand if you have a question. When you finish, turn your exam over, put your pencil down, and raise your hand.

(4) “Formula sheets” are not allowed. Calculators are allowed.

(5) This is a closed book/notes exam covering (from *Calculus* by Edwards & Penny) sections: 7.2–7.5, 8.2–8.3, 9.2–9.7, 11.1–11.4, 12.2–12.9, 10.1–10.2, 18.3, 10.4–10.6.

1. On a separate handout (which is yours to take home) are 25 multiple choice problems.

 (1) On the Scantron sheet provided, for each problem bubble one and only one selection.

 (2) Use a #2 lead pencil.

 (3) Since our scantron machine is very sensitive, it is suggested that you first

 work through the handout, circling your choices directly on the handout,

 then go back and check your answers, then bubble in your scantron card.

Prepare your scantron card as follows:

 (1) Print you name where indicated on the scantron card.

 (2) In the upper left-hand corner, bubble in you personal 4 digit number which

 starts with 00.

 (3) My personal 4 digit number is: 0, 0, ______, ______.
2. Evaluate the following 2 integrals. ⊕ hint: +C ...

2a) \[\int \frac{dx}{(4x^2 + 9)^2} = \]

2b) \[\int \ln(2x + 7) \, dx = \]

⊕ show your work on the back of the previous page.
3. Determine whether each of the following 2 series is absolutely convergent, conditionally convergent, or divergent. **CLEARLY** explain your reasoning and indicate the test(s) used. No credit will be given the work that does not make sense to us!!!!

3a) \[\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 2}{n^3 + 3n} \]

- absolutely convergent
- conditionally convergent
- divergent

3b) \[\sum_{n=3}^{\infty} \frac{(-1)^n}{n (\ln n)^2} \]

- absolutely convergent
- conditionally convergent
- divergent

* show your work on the back of the previous page.
4. Determine the interval of convergence for each of the following 2 power series. **CLEARLY** explain your reasoning. Do not forget to “check the endpoints.”

4a) \(\sum_{n=1}^{\infty} n^n (x-5)^n \) has interval of convergence ____________________________

4b) \(\sum_{n=1}^{\infty} \frac{(2x - 6)^n}{10n + 17} \) has interval of convergence ____________________________

show your work on the back of the previous page.
5. Recall the power series expansion for $\cos x$, which is valid for all x:

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Using this expansion and working through the steps below, find a power series expansion for the definite integral in part c). For what values of x is this series valid? Express your answers in closed form (i.e. using the \sum-sign).

5a) $1 - \cos t = \sum_{n=}$

5b) $\frac{1 - \cos t}{t^2} = \sum_{n=}$

5c) $\int_{0}^{x} \frac{1 - \cos t}{t^2} \, dt = \sum_{n=} \quad \text{valid for } \underline{\text{______________}}.$

5d) Using the above infinite series and the alternating series error estimate test, approximate $\int_{0}^{1} \frac{1 - \cos t}{t^2} \, dt$ within 5 decimal places of accuracy. You may leave your answer in the form of a sum of n terms but explain why your choice of n works!

$$\int_{0}^{1} \frac{1 - \cos t}{t^2} \, dt \approx \underline{\text{__________________________}}$$

★ Show your work below: