MARK BOX				
Problem	Points			
1	10			
2	10			
3	40			
4	20			
5	20			
Total	100			

NAME: _____

SSN: _____

Instructions:

- (1) To receive credit, you must work in a logical fashion, <u>SHOW ALL YOUR WORK</u>, <u>INDICATE YOUR REASONING</u>, and when applicable put your answer on the line (or in the box) provided.
- (2) The "Mark Box" indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- (3) During this test, do not leave your seat. Raise your hand if you have a question. When you finish, turn your exam over, put your pencil down, and raise your hand.
- (4) "Formula sheets" are not allowed. Calculators are allowed.
- (5) This is a closed book/closed notes exam covering (from *Calculus* by Edwards & Penny) sections 11.1–11.4, 12.2–12.6.
- 1. Let c be a fixed constant. Find the limit of the following <u>sequence</u>. Work carefully & indicate the reasoning behind your answer.

a)
$$\lim_{n \to \infty} \left[1 + \frac{c}{n} \right]^n =$$

2. Evaluate the following integral. Work carefully & indicate the reasoning behind your answer.

\int^2	dx	_	
\int_{0}	$(x-1)^3$	_	

3. Determine whether each of the following 4 series is absolutely convergent, conditionally convergent, or divergent. <u>CLEARLY</u> explain your reasoning and indicate the test(s) used. No credit will be given the work that does not make sense to us!!!!

a)
$$\sum_{n=1}^{\infty} \left(\frac{-2}{3}\right)^n$$

_____ absolutely convergent
_____ conditionally convergent
_____ divergent

b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{3^n - 1}$$

_____ absolutely convergent _____ conditionally convergent _____ divergent

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^{\frac{1}{3}}}{n+1}$$

_____ absolutely convergent _____ conditionally convergent _____ divergent

d)
$$\sum_{n=2}^{\infty} \left[\ln \left(1 + \frac{1}{n} \right) \right]^n$$

- _____ absolutely convergent _____ conditionally convergent _____ divergent

4. Mr. Taylor

a) Find the 3rd degree Taylor polynomial $P_3(x)$ and the remainder term $R_3(x)$ about the point a = 1 for the function $f(x) = \ln x$.

b) In part (a), to how many decimal places of accuracy does Taylor's formula guarantee that $P_3(x)$ approximate $f(x) = \ln x$ for x between .8 and 1.2? Show your work on the <u>back</u> of the previous page.

Answer:

decimal places of accuracy

5. A thinker \ldots

Fill in the blanks in the below statement of the Integral Test & Remainder Estimate: Let $\sum a_n$ be a positive-term series. Find a function f(x) such that

(1) (2) (3) Then the series $\sum_{n=1}^{\infty} a_n$ and the improper integral $\int_1^{\infty} f(x) dx$ either:

- (1) both _____ (2) both _____

If they both converge, then $\sum_{n=1}^{\infty} a_n = S_N + R_N$ where

$$S_N \equiv \sum_{n=1}^N a_n$$
 and $R_N \equiv \sum_{n=N+1}^\infty a_n$.

Furthermore,

$$\leq R_N \leq$$

Now consider a sequence $\{b_n\}$ of positive numbers. We say that the *infinite product*

$$\prod_{n=1}^{\infty} (1+b_n)$$

converges to P provided the associated sequence $\{P_N\}_{N=1}^{\infty}$ of partial products where

$$P_N \equiv \prod_{n=1}^N \left(1 + b_n\right)$$

converges to P. So " $\prod_{n=1}^{\infty}(1+b_n)$ converges to P" is equivalent to

$$\lim_{N \to \infty} P_N = P$$

which is equivalent to

$$\lim_{N \to \infty} \ln(P_N) = \ln(P)$$

which is equivalent to

$$\lim_{N \to \infty} \sum_{n=1}^{N} \ln (1 + b_n) = \ln(P) \; .$$

Using (carefully) the Integral Test, determine whether or not the infinite series

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{n^2} \right)$$

converges. From the Integral Test Remainder Estimate, what can you conclude about the relation between $P_N \equiv \prod_{n=1}^N \left(1 + \frac{1}{n^2}\right)$ and $P \equiv \prod_{n=1}^\infty \left(1 + \frac{1}{n^2}\right)$? Show your work on the next page.