MARK BOX		
Problem	Points	
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	

MATH 142 sections 004 \& 005
FALL 1993 EXAM \# 1

NAME: \qquad

SSN: \qquad
Instructions:
(1) To receive credit, you must work in a logical fashion, SHOW ALL YOUR WORK, INDICATE YOUR REASONING, and when applicable put your answer on the line (or in the box) provided.
(2) The "Mark Box" indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) During this test, do not leave your seat. Raise your hand if you have a question. When you finish, turn your exam over, put your pencil down, and raise your hand.
(4) No "formula sheets" allowed. Calculators are not allowed.
(5) This is a closed book/closed notes exam covering (from Calculus \& A.G. by Edwards \& Penny) sections 7.2-7.5, 8.2-8.3, 9.2-9.7.

1. Find $\frac{d y}{d x}$ for:

1a) $y=\operatorname{arcsec} x \quad$ Answer: $\frac{d y}{d x}=$ \qquad .

1b) $y=e^{x} \quad$ Answer: $\frac{d y}{d x}=$ \qquad .

1c) $y=x^{e} \quad$ Answer: $\frac{d y}{d x}=$ \qquad .

1d) $y=3^{x}$ Answer: $\frac{d y}{d x}=$ \qquad .

1e) $y=e^{e} \quad$ Answer: $\frac{d y}{d x}=$ \qquad .

1f) $y=x^{x} \quad$ Answer: $\frac{d y}{d x}=$ \qquad

1g) $y \ln x+x e^{y}=3 \quad$ Answer: $\frac{d y}{d x}=$
2. Evaluate the following 4 integrals. \circledast hint: $+\mathrm{C} \ldots$

2a) $\int \sin ^{3} x \cos ^{2} x d x=$

2b) $\int \ln (2 x+7) d x=$
\circledast show your work on the back of the previous page.

2c) $\int \frac{d x}{\left(4 x^{2}+9\right)^{2}}=$

2d) $\int \frac{x^{3}+2 x^{2}+x+1}{x^{4}+x^{2}} d x=$

* show your work on the back of the previous page.

3. Graph $y=2^{x}$. The inverse of $y=2^{x}$ is the function $y=$. Graph the inverse function of $y=2^{x}$ on the same grid. Be sure to label your functions.
4.

4a) Let $y=f(x)$ and $y=g(x)$ be two functions defined for $x>0$. If for all $x>0$, you know that $f^{\prime}(x)=g^{\prime}(x)$, then what can you say about f and g ?

4b) Using part (4a) and the fact that $D_{x} \ln x=\frac{1}{x}$, show the following Law of Logarithm:

$$
\ln \left(\frac{1}{x}\right)=-\ln x
$$

CLEARLY explain your steps! Do NOT use other Laws of Logarithm!
5. In 1921, President Warren G. Harding presentd Marie Curie a gift of 2 gram of radium on behalf of the women of the United States. Using the fact that the half-life of radium is 1656 years, determine how much of the original 2 -gram gift is left today (in 1993). Your answer can involve exponentials and logs.

Answer: \qquad gram

