N	MARK BOX	
Problem	Points	You
1	30	
2	15	
3	15	
4	10	
5	10	
6	10	
7	10	
Total	100	

MATH 142.1	FALL 1991	EXAM 4	
NAME:			
SSN:			

Instructions:

- (1) To receive credit, you must work in a logical fashion, show all your work, and when applicable put your answer in the box (or on the line) provided.
- (2) During this test, do not leave your seat. Raise your hand if you have a question. When you finish, turn your exam over, put your pencil down, and raise your hand.
- (3) No "formula sheets" allowed. NO CALCULATORS ALLOWED!
- (4) The "Mark Box" indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- 1. Find the interval of convergence for each of the below power series. Do not forget to "check the endpoints." Has parts a), b), and c).

a)	$\sum_{n=1}^{\infty} \frac{x^n}{n!}$	has interval of convergence		•
----	--------------------------------------	-----------------------------	--	---

b)	$\sum_{n=1}^{\infty} \frac{n! x^n}{10^n}$	has interval of convergence		
----	---	-----------------------------	--	--

c)
$$\sum_{n=1}^{\infty} \frac{(2x-6)^n}{5^n}$$
 has interval of convergence _____

2. Working through the steps below, find a power series representation for the given definite integral. For what values of x is this series valid? Express your answers in closed form.

a)
$$e^t = \sum_{n=1}^{\infty}$$

$$b) \quad 1 - e^t = \sum_{n=1}^{\infty} e^{-t}$$

$$c) \quad \frac{1 - e^t}{t} = \sum_{n=1}^{\infty} \frac{1 - e^t}{t}$$

d)
$$\int_0^x \frac{1 - e^t}{t} dt = \sum_{n=1}^\infty \text{valid for } \underline{\hspace{2cm}}.$$

⊗ Show your work below:

- 3. Approximate the sin(1 radians) accurate to two decimal places. Use a partial sum of fewest possible terms for which an appropriate estimate test guarantees the desired accuracy.
 - Answer $\sin(1 \text{ radians}) \approx \underline{\hspace{1cm}}$

4. Sketch the graph of the curve $r^2 = 4\cos\theta$.

5. On the same grid, sketch the curves $r = \sin \theta$ and $r = \cos \theta$. The points of intersection of these two curves are

6.	Let	\boldsymbol{A}	repres	ent	the a	area	outside	r = 2	but	inside	r =	1 + 1	$2\cos\theta$.	See	$th\epsilon$
	sket	ch	below.	Exp	ress	A :	as an int	egral.	Do n	ot evau	ıluate	e the	integral		

Answer $A =$

7. Elimate the parameter and then sketch the graph of the curve

$$x = 5\cos t$$
 $y = 3\sin t$ for $0 \le t \le \pi$.

- \circledast This curve is commonly called _____ .