MARK BOX		
PROBLEM	POINTS	
$1-32$	$96=32 \times 3$	
MML portion	4	
$\%$	100	

HAND IN PART

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.

Furthermore, I have not only read but will also follow the instructions on the exam.

Signature :

Table for Your Multiple Choice Solutions			At most ONE choice per problem.			Leave last column blank	
problem							
1	(1a)	1b	1c	1 d	1 e	1 f	
2	2 a	2b	2c	(2d)	2 e	2 f	
3	3 a	3b	3c	3d	(3e)	3f	
4	4 a	(4b)	4c	4d	4 e	4f	
5	5 a	5b	5c	5 d	(5e)	5 f	
6	6 a	6 b	6c	6d	(6e)	6 f	
7	7 a	7 b	7c	(7d)	7 e	7f	
8	8 a	8b	8c	8d	(8e)	8f	
9	(9a)	9b	9c	9d	9 e	9f	
10	10a	10b	10c	10d	(10e)	10f	
continued							

Table Continued							
11	11a	(11b)	11c	11d	11 e	11f	
12	12a	12b	(12c)	12d	12 e	12 f	
13	13a	(13b)	13c	13d	13 e	13f	
14	14a	14b	14 c	14d	(14e)	14f	
15	15a	15b	(15c)	15d	15 e	15 f	
16	16a	16b	16c	16d	(16e)	16f	
17	17a	17b	17c	(17d)	17 e	17f	
18	18a	(18b)	18c	18d	18 e	18f	
19	19a	19b	19c	(19d)	19e	19f	
20	20a	20b	(20c)	20d	20 e	20f	
21	21a	21b	21c	21d	(21e)	21f	
22	22a	22 b	22c	22d	(22e)	22 f	
23	23a	23b	23c	23d	(23e)	23f	
24	24a	24b	(24c)	24d	24 e	24f	
25	25a	(25b)	25 c	25d	25 e	$25 f$	
26	26a	26b	26c	26d	(26e)	26f	
27	27a	27b	27c	(27d)	27 e	27 f	
28	28a	(28b)	28c	28d	28 e	$28 f$	
29	29a	29b	(29c)	29d	29 e	$29 f$	
30	30a	(30b)	30c	30d	30 e	30 f	
31	31a	31b	31c	31d	(310)	31f	
32	32a	32b	(32c)	32d	32 e	32 f	

INSTRUCTIONS

- This exam comes in two parts.
(1) STATEMENT OF MULTIPLE CHOICE PROBLEMS (pages 3 15).

Do not hand in this part. Take this part home to learn from and to check your answers once solutions are posted.
(2) HAND IN PART (pages 1-2). Hand in only this part.

Once you finish working the problems, raise your hand. You will be given the HAND IN PART to indicate your solutions on a table.
Check that your copy of the exam has all 15 pages.

- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, personal notes, electronic devices, and any device with which you can connect to the internet. Unauthorized materials (including cell phones, as well as your watch) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold during the exam (it will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets.
- Cheating is grounds for a F in the course.
- At a student's request, I will project my watch upon the projector screen. Upon request, you will be given as much (blank) scratch paper as you need.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7, 8.8, 10.1-10.10, 11.1-11.5.

STATEMENT OF MULTIPLE CHOICE PROBLEMS

This portion of the exam is NOT collected.
Thus you do not have to show your work.

- When you initially work through the Multiple Choice Problems, indicate your answers directly on the Statement of Multiple Choice Problems portion of the exam, which is not collected.
- After you have finished working all of the Multiple Choice Problems, circle your answers in the Table for Multiple Choice Solutions, which is collected.
- You may choice up to 1 answer for each multiple choice problem. The scoring is as follows.
* For a problem with precisely one answer marked and the answer is correct, 3 points.
* All other cases, 0 points.
- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. Laws of Logs. If $a, b>0$ and $r \in \mathbb{R}$, then: $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.
- Abbreviations used with Series:
- DCT is Direct Comparison Test.
- LCT is Limit Comparison Test.
- AST is Alternating Series Test.

1. Compute $\int_{1}^{2} \frac{x^{3}}{\sqrt{x^{4}+1}} d x$.

1soln. $\int_{1}^{2} \frac{x^{3}}{\sqrt{x^{4}+1}} d x=\frac{\sqrt{17}-\sqrt{2}}{2}$

$$
\begin{array}{rlr}
u & =x^{4}+1 & \frac{x}{1} \\
d u & =4 x^{3} d x \\
\frac{1}{4} d u & =x^{3} d x & 2 \\
\int_{2}^{17} \frac{1}{4} u^{-1 / 2} d u & =\left.\frac{1}{4} \cdot 2 u^{1 / 2}\right|_{2} ^{17} \\
& =\frac{1}{2}(\sqrt{17}-\sqrt{2})
\end{array}
$$

2. Compute $\int_{1}^{4} \frac{\sin \sqrt{x}}{\sqrt{x}} d x$.

2soln. $\int_{1}^{4} \frac{\sin \sqrt{x}}{\sqrt{x}} d x=2(\cos 1-\cos 2)$

$$
\begin{aligned}
& u=\sqrt{x} \\
& \begin{array}{l}
d u=\frac{1}{2 \sqrt{x}} d x \\
2 d u=\frac{1}{\sqrt{x}} d x
\end{array} \\
& \int_{1}^{2} 2 \sin u d u \\
& =-\left.2 \cos u\right|_{1} ^{2}=-2 \cos 2+2 \cos 1
\end{aligned}
$$

3. Compute $\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x$.

3soln. Let $u=e^{x}$. So $d u=e^{x} d x$. So $\int e^{x} \cos \left(e^{x}\right) d x=\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C$.
Next check indefinite integral: $D_{x} \sin \left(e^{x}\right)=\left[\cos \left(e^{x}\right)\right] D_{x} e^{x}=\left[\cos \left(e^{x}\right)\right] e^{x} \quad \checkmark$.
So $\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x=\left.\sin e^{x}\right|_{x=0} ^{x=\ln (2 \pi)}=\sin e^{\ln (2 \pi)}-\sin e^{0}=\sin (2 \pi)-\sin 1=0-\sin 1=-\sin 1$
4. Compute $\int_{x=1}^{x=e} \frac{\ln x}{x^{2}} d x$.

4soln. $\int_{x=1}^{x=e} \frac{\ln x}{x^{2}} d x=-\frac{2}{e}+1$. Use Integration by parts.

$$
\begin{aligned}
& u v-\int v d u \\
&=-\frac{\ln x}{x}-\int-\frac{1}{x} \cdot \frac{1}{x} d x \\
&=\frac{-\frac{\ln x}{x}+\int \frac{1}{x^{2}} d x}{=} \begin{aligned}
\left.-\frac{\ln x}{x}-\frac{1}{x}\right]_{1}^{e} & =\left(-\frac{1}{e}-\frac{1}{e}\right)-(0-1) \\
& =-\frac{2}{e}+1
\end{aligned}
\end{aligned}
$$

5. Compute $\int_{0}^{\pi / 4} \tan ^{2} x d x$.

5soln. $\int_{0}^{\pi / 4} \tan ^{2} x d x=\int_{0}^{\pi / 4}\left(\sec ^{2} x-1\right) d x=\left.[\tan x-x]\right|_{0} ^{\pi / 4}=1-\frac{\pi}{4}$.
6. Compute $\int \sec ^{4} x \tan ^{4} x d x$.

6soln. $\int \sec ^{4} x \tan ^{4} x d x=\frac{\tan ^{5} x}{5}+\frac{\tan ^{7} x}{7}+C$
First step is to break off your $d u$ and so rewrite given integral as:

$$
\begin{array}{rl}
& \int \sec ^{4} x \tan ^{4} x d x=\int \sec ^{2} x \tan ^{4} x \sec ^{2} x d x \\
& \int \sec ^{2} x \tan ^{4} x \sec ^{2} x d x \\
d u & u=\tan x \\
& \int\left(1+\tan ^{2} x\right) \tan ^{4} x \sec ^{2} x d x \\
& \int\left(1+u^{2}\right) u^{4} x d x_{1} \\
= & \int u^{4}+u^{6} d u \\
= & \frac{1}{5} u^{5}+\frac{1}{7} u^{7}+C \\
= & \frac{1}{5} \tan ^{5} x+\frac{1}{7} \tan ^{7} x+C
\end{array}
$$

7. What is the form for the partial fraction decomposition of $\frac{123 x+170000017}{x^{2}\left(x^{2}-4\right)\left(x^{2}+9\right)}$?

7soln. $\frac{123 x+170000017}{x^{2}\left(x^{2}-4\right)\left(x^{2}+9\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-2}+\frac{D}{x+2}+\frac{E x+F}{x^{2}+9}$
First note degree of den. $=2+2+2=6>1=$ degree of mum. (we have strictly bigger bottoms) and so we do not have to dolong division.
Next factor the dem. into powers of: linear terms and irreducible quadratic terms:
$x^{2}\left(x^{2}-4\right)\left(x^{2}+9\right)=(x-0)^{2}(x-2)^{1}(x+2)^{1}\left(x^{2}+9\right)^{1}$
noting the $\left(x^{2}+0 x+9\right)$ is irreducible since $0^{2}-(4)(1)(9)<0$.
Now see the partial fraction handout from class to see that the PDF takes the form:

$$
\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-2}+\frac{D}{x+2}+\frac{E x+F}{x^{2}+9} .
$$

8. Compute $\int_{0}^{4} \frac{x+2}{x^{2}+4} d x$.

8soln. $\int_{0}^{4} \frac{x+2}{x^{2}+4} d x=\int_{0}^{4}\left(\frac{x}{x^{2}+4}+\frac{2}{x^{2}+4}\right) d x=\left.\left(\frac{1}{2} \ln \left|x^{2}+4\right|+(2) \frac{1}{2} \arctan \frac{x}{2}\right)\right|_{0} ^{4}$ $=\left[\frac{1}{2} \ln 20+\arctan 2\right]-\left[\frac{1}{2} \ln 4+\arctan 0\right]=\frac{1}{2} \ln 20-\frac{1}{2} \ln 4+\arctan 2$.
9. Compute $\int_{4}^{6} \frac{x^{2}}{x-3} d x$.

9soln. $\int_{4}^{6} \frac{x^{2}}{x-3} d x=16+9 \ln 3$

$$
\begin{aligned}
& =\int_{4}^{6} x+3+\frac{9}{x-3} d x \quad x-3 \frac{x+3}{-\frac{x^{2}}{2}} \\
& =\frac{1}{2} x^{2}+3 x+\left.9 \ln |x-3|\right|_{4} ^{6} \\
& =(18+18+9 \ln 3)-(8+12+9 \ln 1) \frac{-(3 x-9)}{9} \\
& =16+9 \ln 3
\end{aligned}
$$

10. What is the correct trigonometric substitution needed to evaluate the integral $\int \sqrt{x^{2}+6 x+5} d x$?

10soln. The trig sub: $x+3=2 \sec \theta$. Complete the square:

$$
\begin{aligned}
& \left(x^{2}+6 x+9\right)+5-9 \\
& (x+3)^{2}-4 \\
& x+3=2 \sec \theta
\end{aligned}
$$

11. Which of the following intergals is obtained by making the correct trig. substitution in evaluating $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$?
11soln. $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x=\int 16 \sin ^{2} \theta d \theta$.

$$
\begin{aligned}
& x=4 \sin \theta \\
& \quad d x=4 \cos \theta d \theta \\
& \int \frac{16 \sin ^{2} \theta \cdot 4 \cos \theta}{\sqrt{16-16 \sin ^{2} \theta}} d \theta=\int \frac{64 \sin ^{2} \theta \cos \theta}{4 \cos \theta} d \theta \\
& =\int 16 \sin ^{2} \theta d \theta
\end{aligned}
$$

12. Compute $\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}$.

12soln. $\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}=4 \sqrt{3}-\frac{4 \pi}{3}$

$$
\begin{aligned}
& x=\sin \theta, 0 \leq \theta \leq \frac{\pi}{3}, d x=\cos \theta d \theta,\left(1-x^{2}\right)^{3 / 2}=\cos ^{3} \theta \\
& \int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}=\int_{0}^{\pi / 3} \frac{4 \sin ^{2} \theta \cos \theta d \theta}{\cos ^{3} \theta}=4 \int_{0}^{\pi / 3}\left(\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right) d \theta=4 \int_{0}^{\pi / 3}\left(\sec ^{2} \theta-1\right) d \theta=4[\tan \theta-\theta]_{0}^{\pi / 3}=4 \sqrt{3}-\frac{4 \pi}{3}
\end{aligned}
$$

13. Compute $\int_{2}^{\infty} x^{3} e^{-x^{4}} d x$.

13soln. $\int_{2}^{\infty} x^{3} e^{-x^{4}} d x=\frac{1}{4 e^{16}}$.

$$
\begin{aligned}
& \int_{2}^{t} x^{3} e^{-x^{4}} d x \left\lvert\, \begin{array}{l}
u=-x^{4} \\
d u=-4 x^{3}
\end{array} d x\right. \\
& \int-\frac{1}{4} e^{u} d u=-\frac{1}{4} e^{u}=-\left.\frac{1}{4} e^{-x^{4}}\right|_{2} ^{t} \\
& =-\frac{1}{4} e^{-t^{4}}+\frac{1}{4} e^{-16} \\
& \lim _{t \rightarrow \infty}\left[-\frac{1}{4} e^{-t^{4}}+\frac{1}{4} e^{-16}\right]=0+\frac{1}{4} e^{-16}
\end{aligned}
$$

14. Compute $\int_{0}^{5} \frac{d x}{x-2}$.

14soln. $\int_{0}^{5} \frac{d x}{x-2}$ diverges (i.e., The integral does not converge to a finite number.)

$$
\begin{aligned}
& \text { VA at } x=2 \rightarrow \int_{0}^{2} \frac{1}{x-2} d x+\int_{2}^{5} \frac{1}{x-2} d x \\
& \int_{0}^{t} \frac{1}{x-2} d x=\left.\ln |x-2|\right|_{0} ^{t}=\ln |t-2|-\ln 2 \\
& \lim _{t \rightarrow 2^{-}}[\ln |t-2|-\ln 2]=-\infty \quad \text { Diverges }
\end{aligned}
$$

15. Consider the two sequences $\left\{a_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ where $a_{n}=\frac{(-1)^{n} n}{3 n+1}$ and $b_{n}=\frac{(-1)^{n} \ln n}{n}$. Which of the following statements is true?
15soln. The sequence $\left\{\frac{(-1)^{n} n}{3 n+1}\right\}_{n=1}^{\infty}$ diverges and sequence $\left\{\frac{(-1)^{n} \ln n}{n}\right\}_{n=1}^{\infty}$ converges to 0 .
Since $\lim _{n \rightarrow \infty} \frac{n}{3 n+1}=\frac{1}{3} \neq 0$, the sequence $\left\{\frac{(-1)^{n} n}{3 n+1}\right\}_{n=1}^{\infty}$ diverges.
Since $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$, we have that $\lim _{n \rightarrow \infty} \frac{(-1)^{n} \ln n}{n}=0$.
16. For a series $\sum_{n=1}^{\infty} a_{n}$, the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of partial sums are $s_{n}=2+e^{1 / n}$.

Which of the following statements is true?
${ }_{16 s o l n}$. The series $\sum a_{n}$ converges to 3 .

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} 2+e^{1 / n}=2+e^{0}=3
$$

17. Which of the following series diverge by the $n^{\text {th }}$-term test for divergence?
(I) $\sum_{n=0}^{\infty} \frac{2 n+1}{3 n+4}$
(II) $\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}$
(III) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n+3}$

Hint. This question is not asking which series diverge (by some test) but rather which series diverge by the $n_{\sim}^{\text {th }}$-term test. 17soln. I and III only.
(I) $\sum_{n=0}^{\infty} \frac{2 n+1}{3 n+4} \quad \lim _{n \rightarrow \infty} \frac{2 n+1}{3 n+4}=\frac{2}{3} \neq 0 \rightarrow$ Diverges
(II) $\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n} \quad \lim _{n \rightarrow \infty}\left(\frac{1}{4}\right)^{n}=0$
(III) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n+3} \lim _{n \rightarrow \infty} \frac{n^{2}+1}{n+3}=\infty \rightarrow$ Diverges
18. The series $\sum_{n=1}^{\infty} \frac{2+\sin n}{n \sqrt{n}}$

18soln. converges by the DCT, using for comparison $\sum_{n=1}^{\infty} \frac{3}{n \sqrt{n}}$.
Since DCT is for positive termed series, we check: $\frac{2+\sin n}{n \sqrt{n}} \geq \frac{2-1}{n \sqrt{n}}>0$.
Also $\frac{2+\sin n}{n \sqrt{n}} \leq \frac{2+1}{n \sqrt{n}}=\frac{3}{n \sqrt{n}}=\frac{3}{n^{3 / 2}}$ and $\sum \frac{3}{n^{3 / 2}}$ (a p-series with $p=3 / 2>1$) converges.
So bounded aboved by convergent, as needed for DCT.
19. The formal series (note: in the demoninator is the cube root $\sqrt[3]{ }$, not the square root $\sqrt[2]{ }$)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt[3]{(n+1)(n+2)(n+3)}}
$$

is
19soln. Thinking Land: $\frac{1}{\sqrt[3]{(n+1)(n+2)(n+3)}} \stackrel{n \text { big }}{\sim} \frac{1}{\sqrt[3]{(n)(n)(n)}}=\frac{1}{n}$. So let

$$
b_{n}=\frac{1}{n} \quad \text { and } \quad a_{n}=\frac{(-1)^{n}}{\sqrt[3]{(n+1)(n+2)(n+3)}}
$$

Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt[3]{(n+1)(n+2)(n+3))}}=\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n^{3}}}{\sqrt[3]{(n+1)(n+2)(n+3)}} \\
& =\lim _{n \rightarrow \infty} \sqrt[3]{\frac{n^{3}}{(n+1)(n+2)(n+3)}}=\sqrt[3]{\frac{1}{1}}=1 .
\end{aligned}
$$

Since $0<\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$, by the LCT, $\sum b_{n}$ and $\sum\left|a_{n}\right|$ do the same thing and we know that $\sum b_{n}$ is the harmonic series so $\sum b_{n}$ is diverges. So $\sum\left|a_{n}\right|$ diverges.
Now let $u_{n}=\frac{1}{\sqrt[3]{(n+1)(n+2)(n+3)}}$. Since $0 \leq u_{n} \searrow 0$, by the AST, $\sum(-1)^{n} u_{n}$ converges.
Now look at the choices.
20. The series $\sum_{n=1}^{\infty} \frac{n 2^{n}}{3^{2 n}}$ is

20soln. convergent by the Ratio Test since the limit found using the Ratio Test is $\frac{2}{9}$

$$
\frac{\frac{(n+1) 2^{n+1}}{3^{2(n+1)}}}{\frac{n 2^{n}}{3^{2 n}}}=\frac{(n+1) 2^{n+1}}{3^{2(n+1)}} \frac{3^{2 n}}{n 2^{n}}=\frac{n+1}{n} \frac{2^{n+1}}{2^{n}} \frac{3^{2 n}}{3^{2 n+2}}=\frac{n+1}{n}(2) \frac{1}{3^{2}} \xrightarrow{n \rightarrow \infty} 1(2) \frac{1}{9}=\frac{2}{9}
$$

21. Which of the following alternating series converge by the Alternating Series Test?
(I) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(II) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
(III) $\sum_{n=3}^{\infty} \frac{(-1)^{n} \ln n}{n}$

Hint. This question is not asking which series converges (by some test) but rather which series converge by the AST.
21soln. AST says if u_{n} 's are positive, decreasing, and $\lim _{n \rightarrow \infty} u_{n}=0$ (in short, if $0<u_{n} \searrow 0$), then $\sum(-1)^{n} u_{n}$ converges.
In Series (I), $u_{n}=\frac{1}{\sqrt{n}}$. Since $0<\sqrt{n} \nearrow \infty$, the reciprocal satisfies $0<\frac{1}{\sqrt{n}} \searrow 0$.
In Series (II), $u_{n}=\frac{1}{n}$. Since $0<n \nearrow \infty$, the reciprocal satisfies $0<\frac{1}{n} \searrow 0$.
In Series (III) $u_{n}=\frac{\ln n}{n}$. Clearly, $0<\frac{\ln n}{n}$. Also $\lim _{n \rightarrow \infty} \frac{\ln n}{n} \underset{\text { L'H }}{\text { 登 }} \frac{1}{n}=\frac{1}{n}=0$. To check decreasing, let $f(x)=\frac{\ln x}{x}$ and compute: $f^{\prime}(x)=\frac{\frac{1}{x}(x)-(\ln x)(1)}{x^{2}}=\frac{1-\ln x}{x^{2}}<0 \Leftrightarrow 0>1-\ln x \Leftrightarrow \ln x>1 \Leftrightarrow x>e^{1}$.
So for $n>e$ (so $n \geq 3$), the u_{n} 's are decreasing.
22. Determine the radius R and the interval I of convergence for the power series $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{5^{n} n!}$

22soln. $R=\infty$ and $I=\{-\infty, \infty\}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{5^{n+1}(n+1)!} \cdot \frac{5^{n} n!}{(x-1)^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(x-1)^{n+1}}{(x-1)^{n}} \cdot \frac{5^{n}}{5^{n+1}} \cdot \frac{n!}{(n+1)!}\right|=\lim _{n \rightarrow \infty}\left|\frac{x-1}{5(n+1)}\right| \\
& \quad=|x-1| \cdot \lim _{n \rightarrow \infty} \frac{1}{5(n+1)}=|x-1| \lim _{n \rightarrow \infty} \frac{1}{5} \cdot \frac{1}{n+1}=|x-1| \cdot 0 \stackrel{\text { Ratio Test so want }}{<} 0
\end{aligned}
$$

and $|x-1| \cdot 0<0$ for all x.
23. The power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-2$ and diverges when $x=5$.

What can be concluded about the convergence and divergence below two numerical series?
(I) $\sum_{n=0}^{\infty} c_{n} 2^{n}$
(II) $\sum_{n=0}^{\infty} c_{n}(-6)^{n}$

23soln. cannot determined what (I) does but know that (II) diverges

24. Find the third order Taylor polynomial $y=p_{3}(x)$, centered at $x_{0}=1$, for the function $f(x)=\sqrt{x}$.

24soln. $p_{3}(x)=1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$

$$
\begin{aligned}
& f(x)=\sqrt{x} ; f(1)=1 \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2} ; f^{\prime}(1)=\frac{1}{2} \\
& f^{\prime \prime}(x)=-\frac{1}{4} x^{-3 / 2} ; f^{\prime \prime}(1)=-\frac{1}{4} \\
& f^{\prime \prime}(x)=\frac{3}{8} x^{-5 / 2} ; f^{\prime \prime \prime}(1)=3 / 8 \\
& 1+\frac{1}{2}(x-1)-\frac{1}{4-2!}(x-1)^{2}+\frac{3}{8 \cdot 3!}(x-1)^{3} \\
& 1 / 8
\end{aligned}
$$

25. The Taylor series for a function $y=f(x)$, centered at $x_{0}=2$, is $\sum_{n=0}^{\infty} \frac{3 n}{(n+1)!}(x-2)^{n}$.

What is $f^{(32)}(2)$, i.e., what is the $32^{\text {nd }}$ derivative of $y=f(x)$ evaluated at $x=2$?
${ }^{25}$ sols. $f^{(32)}(2)=\frac{96}{33}$

$$
\begin{aligned}
& \frac{f^{(11)}(2)}{n!}=\frac{3 n}{(n+1)!} \\
& \frac{f^{(32)}(2)}{32!}=\frac{3(32)}{33!} \\
& f^{(32)}(2)=\frac{96}{33!} \cdot 32!=\frac{96}{33}
\end{aligned}
$$

26. A power series representation of the function $f(x)=\frac{x}{2-x}$ is

26soln. $\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n+1}}$

$$
\begin{aligned}
\frac{x}{2-x}=x \cdot \frac{1}{2\left(1-\frac{x}{2}\right)} & =\frac{x}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{x^{n+1}}{2^{n+1}}
\end{aligned}
$$

27. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} .
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(-1,3)$.
$\frac{(e)\left(3^{6}\right)}{6!}$
For each $x \in(-1,3)$, there exists $c \in(-1,3)$ so that

$$
\left|R_{5}(x)\right|=\left|\frac{f^{(6)}(c)}{6!} \quad(x-0)^{6}\right|=\frac{1}{6!} e^{-c}|x|^{6} \leq \frac{1}{6!} e^{-(-1)} 3^{6}
$$

28. Find an equation for the line tangent to the curve parameterized by

$$
\begin{aligned}
& x=4+\ln t \\
& y=2 t+t^{2}
\end{aligned}
$$

at the point given by the value $t=1$.
28soln. $y=4 x-13$

$$
\begin{aligned}
& \text { Slope }=\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad x(1)=\ln (1)+4=4 \\
& y(1)=2(1)+(1)^{2}=3 \\
& \frac{d y}{d t}=2+2 t \quad \frac{d y}{d x}=\frac{2+2 t}{1 / t} @ t=1 \Rightarrow \frac{2+2(1)}{1 /(1)}=4 \\
& \frac{d x}{d t}=1 / t \\
& y-3=4(x-4) \quad y=4 x-13 \\
& y-3=4 x-16 \quad y
\end{aligned}
$$

29. The curve parameterized by

$$
\begin{aligned}
& x=1+\cos t \\
& y=-2+\sin t
\end{aligned}
$$

for $0 \leq t \leq 2 \pi$ is a circle
29 soln. centered at $(1,-2)$ with raduis 1 , oriented counterclockwise.

$$
\begin{array}{ll}
\cos (t)=x-1 & (x-1)^{2}+(y+2)^{2}=1 \\
\sin (t)=y+2 & \text { circle, } \quad r=1, \quad c:(1,-2)
\end{array}
$$

t	x	y
0	2	-2
$\pi / 2$	1	-1

30. The arc length of the curve parameterized by

$$
\begin{aligned}
& x=3 t^{2} \\
& y=2 t^{3}
\end{aligned}
$$

$$
\text { for } 0 \leq t \leq 3, \text { is }
$$

30soln. ans: $20 \sqrt{10}-2$
31. The point given by Cartesian coordinates $(-1, \sqrt{3})$ has polar coordinates

31soln. $\left(-2, \frac{5 \pi}{3}\right)$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=(-1)^{2}+(\sqrt{3})^{2}=1+3=4 \\
& |r|=2 \\
& \tan (\theta)=\frac{y}{x}=\frac{\sqrt{3}}{-1} \\
& \frac{\sin (\theta)}{\cos (\theta)}=\frac{\sqrt{3} / 2}{-1 / 2}
\end{aligned}
$$

$\left(2, \frac{2 \pi}{3}\right)$ Not an answer choice.
Alternative Description: $\left(-2, \frac{5 \pi}{3}\right)$

$$
\begin{aligned}
& \mathrm{AL}=\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{t=0}^{t=3} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t=\int_{t=0}^{t=3} \sqrt{6^{2} t^{2}+6^{2} t^{4}} d t \\
& =\int_{t=0}^{t=3} \sqrt{6^{2} t^{2}\left(1+t^{2}\right)} d t \quad=\int_{t=0}^{t=3} 6 t \sqrt{1+t^{2}} d t \quad=3 \int_{t=0}^{t=3}(2 t)\left(1+t^{2}\right)^{1 / 2} d t \\
& \begin{array}{l}
\text { let } u=1+t^{2} \\
\text { so } d u=2 t d t
\end{array} \int_{u=1}^{u=10} u^{1 / 2} d u \quad=\left.(3)\left(\frac{2}{3}\right) u^{3 / 2}\right|_{u=1} ^{u=10} \quad=\left.2 u \sqrt{u}\right|_{u=1} ^{u=10}=20 \sqrt{10}-2 \text {. }
\end{aligned}
$$

32. The circle with Cartesian equation $x^{2}+y^{2}=2 x$ has polar equation 32soln. $r=2 \cos \theta$

$$
\begin{aligned}
x^{2}+y^{2}=r^{2} \\
x=r \cos \theta
\end{aligned} \quad \begin{aligned}
r^{2}= & r \cos \theta \\
& \text { Divide by } r \\
& r=2 \cos \theta
\end{aligned}
$$

