

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND-IN PART. Hand-in only this part.
(2) NOT TO HAND-IN PART. This part will not be collected.

Take this part home to learn from and to check your answers when the solutions are posted.

- For the Multiple Choice problems, circle your answer(s) on the provided chart. No need to show work.
- The mark box above indicates the problems (check that you have them all) along with their points.
- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, personal notes, electronic devices, and any device with which you can connect to the internet. Unauthorized materials (including cell phones, as well as your watch) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, give it to Prof. Girardi to hold for you during the exam (and it will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a student's request, I will project my watch upon the projector screen.
- Cheating is grounds for a F in the course.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7, 8.8, 10.1-10.10, 11.1-11.5 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.
I verify that I did NOT receive help from other people or devices on the MML portion of this exam.

Signature :

MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table below your solution to the multiple choice problems.
- You may choose up to $\mathbf{1}$ answers for each multiple choice problem

The scoring is as follows.

* For a problem with precisely one answer marked and the answer is correct, 3 points.
* All other cases, 0 points.

At most ONE choice per problem. Table for Your Muliple Choice Solutions						
problem						leave this column blank
1	1 a	1 b	1 c	1 d	1 e	
2	2 a	2 b	2 c	2d	2 e	
3	3 a	3 b	3c	3d	3 e	
4	4a	4 b	4 c	4d	4 e	
5	5 a	5 b	5 c	5d	5 e	
6	6 a	6 b	6 c	6d	6 e	
7	7 a	7 b	7 c	7d	7 e	
8	8 a	8 b	8 c	8d	8 e	
9	9a	9 b	9 c	9d	9 e	
10	10a	10b	10c	10d	10e	
11	11a	11b	11c	11d	11e	
12	12a	12b	12c	12d	12e	
13	13a	13b	13c	13d	13 e	
14	14a	14b	14 c	14d	14 e	
15	15a	15b	15c	15d	15 e	
16	16a	16b	16c	16d	16 e	
17	17a	17b	17c	17d	17 e	
18	18a	18b	18c	18d	18e	
19	19a	19b	19c	19d	19e	
20	20a	20b	20c	20d	20 e	
21	21a	21b	21c	21d	21 e	
22	22a	22b	22c	22d	22 e	
23	23a	23b	23c	23d	23 e	
24	24a	24b	24 c	24d	24 e	
25	25a	25b	25 c	25d	25 e	
26	26a	26b	26c	26d	26 e	
27	27a	27 b	27c	27d	27 e	
28	28a	28b	28c	28d	28 e	
29	29a	29b	29c	29d	29 e	
30	30a	30b	30c	30d	30 e	

NOT TO HAND-IN PART
 STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. Laws of Logs. If $a, b>0$ and $r \in \mathbb{R}$, then: $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.
- Abbreviations used with Series:
- DCT is Direct Comparison Test.
- LCT is Limit Comparison Test.
- AST is Alternating Series Test.

1. Evaluate

$$
\int_{3}^{27} \frac{1}{2 x} d x .
$$

You can use the Laws of Logs (see above Hint).
a. $\ln 3$
b. $\ln 5$
c. $\ln 9$
d. $\ln 25$
e. $\ln 27$
2. Find the polynomial $y=p(x)$ so that

$$
\int(p(x)) e^{x^{2}} d x=x e^{x^{2}}+C
$$

Recall that $e^{x^{2}}=e^{\left(x^{2}\right)}$. Also note that we cannot integrate the function $y=e^{x^{2}}$ with techniques we have learned thus far (in fact, $y=e^{x^{2}}$ does not have elementary antiderivative). Have you yet read the Hints at the top of page?
a. $p(x)=x^{3}$
b. $p(x)=2 x$
c. $p(x)=x+1$
d. $p(x)=2 x^{2}+1$
e. None of the others.
-. Problems 1 and 2 were meant to reiterate the importance of the above two Hints. Kept them in mind while doing the rest of the integration problems.
3. Evaluate

$$
\int_{0}^{1} \frac{36 d x}{(2 x+1)^{3}}
$$

Answer:
a. 8
b. $\frac{4}{9}$
c. $\frac{40}{9}$
d. $\frac{20}{81}$
e. None of the others.
4. Evaluate

$$
\int_{0}^{\pi} \sin ^{2} 5 r d r
$$

Answer:
a. $\frac{5 \pi}{2}$
b. $\frac{5 \pi}{2}-\frac{1}{4}$
c. $\frac{\pi}{2}$
d. $\frac{\pi}{2}-\frac{1}{20}$
e. None of the others.
5. Evaluate

$$
\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{4} x d x
$$

Answer:
a. 0
b. $\frac{2}{35}$
c. $\frac{4}{35}$
d. $\frac{12}{35}$
e. None of the others.
6. Evaluate

$$
\int_{0}^{1} x^{2} e^{x} d x
$$

Answer:
a. $e-2$
b. $e+1$
c. $2 e+1$
d. $2 e+2$
e. None of the others.
7. Evaluate

$$
\int_{1}^{e} x^{2} \ln x d x
$$

Answer:
a. e
b. $e+1$
c. $\frac{e^{3}+1}{9}$
d. $\frac{2 e^{3}+1}{9}$
e. None of the others.
8. Evaluate

$$
\int_{x=0}^{x=\pi} e^{3 x} \cos 2 x d x
$$

Answer:
a. 0
b. $\frac{3}{13}\left(e^{3 \pi}-1\right)$
c. $\frac{3}{5}\left(e^{3 \pi}\right)$
d. $\frac{3}{5}\left(e^{3 \pi}-1\right)$
e. None of the others.
9. Evaluate

$$
\int_{3}^{7} \frac{d x}{x^{2}-6 x+25}
$$

Hint. Complete the square: $x^{2}-6 x+25=(x \pm ?)^{2} \pm$? .
a. $\ln \frac{4}{3}$
b. $\ln \frac{32}{25}$
c. $\frac{\pi}{16}$
d. $\frac{\pi}{4}$
e. None of the others.
10. Evaluate

$$
\int_{3}^{5} \frac{\sqrt{25-x^{2}}}{x} d x
$$

Answer:
a. $5 \ln 3-4$
b. $\ln \frac{5}{4} 8$
c. $\ln \frac{5}{3}$
d. $\frac{1}{5} \ln \frac{5}{3}$
e. None of the others.
11. Evaluate

$$
\int_{1}^{2} \frac{d x}{x(x+1)^{2}}
$$

Answer:
a. $\ln \frac{4}{3}$
b. $\ln \frac{4}{3}-\frac{1}{6}$
c. $\ln 2$
d. $\ln 2-\frac{1}{6}$
e. None of the others.
12. Evaluate

$$
\int_{0}^{1} \frac{d x}{(x+1)\left(x^{2}+1\right)}
$$

Answer:
a. $\frac{\ln 2}{4}+\frac{\pi}{8}$
b. $\frac{\ln 2}{2}+\frac{\pi}{8}$
c. $\frac{\ln 2}{4}+\frac{5 \pi}{8}$
d. $\frac{\ln 2}{2}+\frac{5 \pi}{8}$
e. None of the others.
13. Evaluate

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}
$$

Answer:
a. $\frac{\pi}{2}$
b. π
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
14. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{6}} d x
$$

Answer:
a. $\frac{2}{5}$
b. $\frac{-2}{5}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
15. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{5}} d x
$$

Answer:
a. 0
b. $\frac{1}{2}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
16. Investigate the convergence of

$$
\int_{x=1}^{x=\infty} \frac{1-e^{-x}}{x} d x
$$

a. The integral converges by the Limit Comparison Test for Improper Integrals, comparing the integrand with $g(x)=\frac{1}{x}$.
b. The integral diverges by the Limit Comparison Test for Improper Integrals, comparing the integrand with $g(x)=\frac{1}{x}$.
c. The integral converges by the Direct Comparison Test for Improper Integrals, comparing the integrand with $g(x)=\frac{1}{x}$.
d. The integral diverges by the Direct Comparison Test for Improper Integrals, comparing the integrand with $g(x)=\frac{1}{x}$.
e. None of the others.
17. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{25 n^{3}+4 n^{2}+n-5}}{7 n^{\frac{3}{2}}+6 n-1}
$$

Answer:
a. 0
b. $\frac{5}{7}$
c. $\frac{25}{7}$
d. ∞
e. None of the others.
18. Find all real numbers r satisfying that

$$
\sum_{n=2}^{\infty} r^{n}=\frac{1}{2}
$$

a. $\frac{1}{2}$
b. $\frac{-1}{2}$ and $\frac{1}{3}$
c. $\frac{-1}{3}$ and $\frac{1}{4}$
d. $\frac{-1}{4}$ and $\frac{1}{5}$
e. None of the others.
19. Consider the following two series.

Series A is $\quad \sum_{n=1}^{\infty} \frac{1}{n}$
Series B is $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
a. both series converge absolutely
b. both series diverge
c. series A converges conditionally and series B diverges
d. series A diverges and series B converges conditionally
e. None of the others.
20. The formal series (note: in the demoninator is the cube root $\sqrt[3]{ }$, not the square root $\sqrt[2]{ }$)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt[3]{(n+1)(n+2)(n+3)}}
$$

is
a. absolutely convergent, as seen by the LCT (using for comparison $\sum \frac{1}{n^{3 / 2}}$).
b. conditionally convergent, as seen by using only the AST and not other tests.
c. conditionally convergent, as seen by using the LCT (using for comparison $\sum \frac{1}{n}$) as well as the AST.
d. divergent.
e. None of the others.
21. The formal series

$$
\sum_{n=17}^{\infty} \frac{1}{n \ln n}
$$

is:
a. convergent by the integral test.
b. divergent by the integral test
c. convergent by the ratio test.
d. divergent by the ratio test
e. None of the others.
22. Consider the formal series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(3 n)!}
$$

Let

$$
a_{n}=\frac{(-1)^{n} n!}{(3 n)!} \quad \text { and } \quad \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

Then
a. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(3 n)!}$ converges absolutely by the Ratio Test because $\rho=0$.
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(3 n)!}$ converges absolutely by the Ratio Test because $\rho=\frac{1}{3}$.
c. $\rho=1$ so the Ratio Test fails for $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(3 n)!}$.
d. $\quad \rho>1$ so by the Ratio Test $\sum_{n=1}^{\infty} \frac{(-1)^{n} n!}{(3 n)!}$ diverges
e. None of the others.
23. The formal series

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.23}}
$$

is
a. divergent by the $n^{\text {th }}$-term test
b. divergent by the Direct Comparison Test, using for comparison $\sum \frac{1}{n}$
c. absolutely convergent by the Direct Comparison Test, using for comparison $\sum \frac{1}{n^{2}}$
d. absolutely convergent by the Direct Comparison Test, using for comparison $\sum \frac{1}{n^{1.01}}$
e. None of the others.
24. Let c be a natural number (i.e., $c \in\{1,2,3,4, \ldots\}$). The series

$$
\sum_{n=1}^{\infty} \frac{(n!)^{6}}{(c n)!}
$$

a. converges when $c<6$ and diverges when $c \geq 6$
b. converges when $c \leq 6$ and diverges when $c>6$
c. diverges when $c<6$ and converges when $c \geq 6$
d. diverges when $c \leq 6$ and converges when $c>6$
e. None of the others.
25. What is the LARGEST interval for which the formal power series

$$
\sum_{n=1}^{\infty} \frac{(5 x+15)^{n}}{4^{n}}
$$

is absolutely convergent?
a. $\left(\frac{11}{5}, \frac{19}{5}\right)$
b. $\left[\frac{11}{5}, \frac{19}{5}\right]$
c. $\left(\frac{-19}{5}, \frac{-11}{5}\right)$
d. $\left[\frac{-19}{5}, \frac{-11}{5}\right]$
e. None of the others.
26. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{2}{3-x}
$$

about the center $x_{0}=0$ and state when this Taylor series is valid. Hint:

$$
f(x)=\frac{2}{3-x}=\left(\frac{2}{3}\right)\left(\frac{1}{1-\frac{x}{3}}\right) .
$$

by simple algebra.
a. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} x^{n}$, valid for $|x|<1$
b. $\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^{n}$, valid for $|x|<3$
c. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<1$
d. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<3$
e. None of the others.
27. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{1}{(1-x)^{4}}
$$

about the center $x_{0}=0$ which is valid for $|x|<1$. Hint. Start with the Taylor series expansion

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad \text { valid for }|x|<1
$$

and differentiate (as many times as needed). Be careful and don't forget the chain rule:

$$
D_{x}(1-x)^{-1}=(-1)(1-x)^{-2} D_{x}(1-x)=(-1)(1-x)^{-2}(-1)=(1-x)^{-2}
$$

Answer:
a. $\sum_{n=0}^{\infty} \frac{(n)(n-1)(n-2)}{6} x^{n-3}$
b. $\sum_{n=0}^{\infty}(n)(n-1)(n-2) x^{n}$
c. $\sum_{n=0}^{\infty} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
28. Let the function $y=f(x)$ have a power series power series representation $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$, which is valid in some interval $\left(x_{0}-R, x_{0}+R\right)$ with $R>0$. What, if anything, can you say about the second derivative $f^{\prime \prime}\left(x_{0}\right)$ of f evaluated at x_{0} ?
a. Then $f^{\prime \prime}\left(x_{0}\right)$ must be c_{0}.
b. Then $f^{\prime \prime}\left(x_{0}\right)$ must be c_{2}.
c. Then $f^{\prime \prime}\left(x_{0}\right)$ must be $2 c_{2}$.
d. Then we know that $f^{\prime \prime}\left(x_{0}\right)$ exists but we do not know what the value of $f^{\prime \prime}\left(x_{0}\right)$ is.
e. None of the others.
29. Find the $2^{\text {nd }}$ order Taylor polynomial for the function $f(x)=\sqrt[3]{x}$ about the center $x_{0}=8$.
a. $\quad P_{2}(x)=2+\frac{x}{12}-\frac{x^{2}}{9\left(2^{5}\right)}$
b. $\quad P_{2}(x)=2+\frac{(x-8)}{12}+\frac{(x-8)^{2}}{9\left(2^{5}\right)}$
c. $\quad P_{2}(x)=2+\frac{(x-8)}{12}-\frac{(x-8)^{2}}{9\left(2^{5}\right)}$
d. $\quad P_{2}(x)=2+\frac{(x-8)}{12}-\frac{(x-8)^{2}}{9\left(2^{4}\right)}$
e. None of the others.
30. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(-1,3)$.
a. $\frac{(e)\left(3^{5}\right)}{5!}$
b. $\frac{\left(e^{-3}\right)\left(3^{5}\right)}{5!}$
c. $\frac{(e)\left(3^{6}\right)}{6!}$
d. $\frac{\left(e^{-3}\right)\left(3^{6}\right)}{6!}$
e. None of the others.

