HAND IN PART

MARK BOX		
PROBLEM		
$1-30$	30	
$\%$	100	

PIN:
17

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND IN PART. Hand in only this part.
(2) NOT TO HAND-IN PART. This part will not be collected.

Take this part home to learn from and to check your answers when the solutions are posted.

- For the Multiple Choice problems, circle your answer(s) on the provided chart.

No need to show work.

- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, personal notes, electronic devices, and any device with which you can connect to the internet. Unauthorized materials (including cell phones, as well as your watch) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold during the exam (it will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets.
- Cheating is grounds for a F in the course.
- At a student's request, I will project my watch upon the projector screen. Upon request, you will be given as much (blank) scratch paper as you need.
- The mark box above indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7, 8.8, 10.1-10.10, 11.1-11.5 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table your solution to the multiple choice problems.
- You may choose up to $\mathbf{1}$ answers for each multiple choice problem

The scoring is as follows.

* For a problem with precisely one answer marked and the answer is correct, $\frac{10}{3}=3 . \overline{3}$ points.
* All other cases, 0 points.

At most ONE choice per problem. Table for Your Muliple Choice Solutions						
Problem						leave this column blank
1	(1a)	1b	1 c	1 d	1 e	
2	(2a)	2b	2 c	2d	2 e	
3	3 a	3b	(3c)	3 d	3 e	
4	4 a	4b	4 c	(4d)	4 e	
5	5 a	(5b)	5 c	5 d	5 e	
6	6 a	6 b	6 c	(6d)	6 e	
7	7 a	(7b)	7c	7 d	7 e	
8	(8a)	8b	8 c	8d	8 e	
9	9a	(9b)	9c	9d	9 e	
10	(10a)	10b	10c	10d	10 e	
11	11a	11b	11c	(110)	11e	
12	12a	12b	12c	12d)	12e	
13	13a	13b	13c	(13d)	13 e	
14	(14a)	14b	14c	14d	14 e	
15	15a	15b	15c)	15d	15 e	
16	16a	16b	16c)	16d	16e	
17	17 a	17 b	(17c)	17d	17 e	
18	18a	(18b)	18c	18d	18 e	
19	19a	(19b)	19c	19d	19 e	
20	20a	20b	(20c)	20d	20 e	
21	21a	21b	21c	(21d)	21 e	
22	22a	22b	(22c)	22d	22 e	
23	23a	(23b)	23 c	23d	23 e	
24	24a	24b	24c)	24d	24 e	
25	25a	25b	(25c)	25d	25 e	
26	26a	(26b)	26c	26d	26 e	
27	(27a)	27 b	27c	27d	27 e	
28	28a	28b	28c	28d	28 e	
29	29a	(29b)	29 c	29d	29 e	
30	(30a)	(30b)	(30c)	(30d)	(30)	17

NOT TO HAND-IN PART
 STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (ie. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. Laws of Logs. If $a, b>0$ and $r \in \mathbb{R}$, then: $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.
- Abbreviations used with Series:
- DCT is Direct Comparison Test.
- LCT is Limit Comparison Test.
- AST is Alternating Series Test.

1. Evaluate the integral

$$
\int_{0}^{1} \frac{x}{x^{2}+9} d x
$$

1soln.

$$
\begin{aligned}
& \int_{x=0}^{x=1} \frac{x}{x^{2}+9} d x=\frac{1}{2} \int_{u=9}^{u=10} \frac{d u}{u}=\left.\frac{1}{2} \ln |u|\right|_{u=9} ^{u=10} \\
& \quad=\frac{1}{2} \ln 10-\frac{1}{2} \ln 9 \\
& d u=2 x d x \\
& \begin{array}{l}
x=0 \Rightarrow u=9 \\
x=1 \Rightarrow u=10
\end{array}
\end{aligned}
$$

2. Evaluate the integral

$$
\int_{0}^{4} \frac{x}{x+9} d x
$$

2soln.

$$
\int_{0}^{4} \frac{x}{x+9} d x
$$

Do not have strictly bigger bottoms so mad to do long division. But it's easy to "fake" long divisionhere." $\frac{x}{x+9}=\frac{x+9-9}{x+9}=\frac{x+9}{x+9}-\frac{9}{x+9}=1-\frac{9}{x+9}$.

$$
\begin{aligned}
& \text { So } \\
& \int_{0}^{4} \frac{x}{x+9} d x=\int_{0}^{4}\left[1-\frac{9}{x+9}\right] d x
\end{aligned}
$$

$$
=[x-9 \ln |x+9|] \quad \left\lvert\, \begin{aligned}
& x=4 \\
& x=0
\end{aligned}\right.
$$

$$
=(4-9 \ln 13)-(0-9 \ln 9)
$$

$$
=4-9 \ln 13+9 \ln 9
$$

3. Evaluate

$$
\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x
$$

3soln. Let $u=e^{x}$. So $d u=e^{x} d x$. So $\int e^{x} \cos \left(e^{x}\right) d x=\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C$.
Next check indefinite integral: $D_{x} \sin \left(e^{x}\right)=\left[\cos \left(e^{x}\right)\right] D_{x} e^{x}=\left[\cos \left(e^{x}\right)\right] e^{x} \quad \checkmark$.
So $\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x=\left.\sin e^{x}\right|_{x=0} ^{x=\ln (2 \pi)}=\sin e^{\ln (2 \pi)}-\sin e^{0}=\sin (2 \pi)-\sin 1=0-\sin 1=-\sin 1$
4. Evaluate

$$
\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x
$$

4soln. Below we show that

$$
\int e^{x} \cos x d x=\frac{e^{x}(\sin x+\cos x)}{2}+C
$$

So

$$
\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x=\left.\frac{e^{x}(\sin x+\cos x)}{2}\right|_{0} ^{3 \pi / 2}=\frac{e^{3 \pi / 2}(-1)}{2}-\frac{e^{0}(1)}{2}=\frac{-1-e^{3 \pi / 2}}{2}
$$

To find the indefinite integral, use two integration by parts and the bring to the other side idea. For the two integration by parts, put the expontential function with either the u 's both times or the $d v$'s both times.

Way \# 1

For this way, for each integration by parts, we let the u involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=e^{1 x} & d v_{1}=\cos 1 x d x \\
d u_{1}=1 e^{1 x} d x & v_{1}=\frac{1}{1} \sin 1 x
\end{array}
$$

So by integration by parts

$$
\int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1} \int e^{1 x} \sin 1 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=e^{1 x} & d v_{2}=\sin 1 x d x \\
d u_{2}=1 e^{1 x} d x & v_{2}=\frac{-1}{1} \cos 1 x
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1}\left[\frac{-1}{1} e^{1 x} \cos 1 x-\frac{-1}{1} \int e^{1 x} \cos 1 x d x\right] \\
& =\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x-\frac{1^{2}}{1^{2}} \int e^{1 x} \cos 1 x d x
\end{aligned}
$$

Now solving for $\int e^{1 x} \cos 1 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{1^{2}}{1^{2}}\right] \int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x+K
$$

and so

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\left[\frac{1^{2}}{2}\right]\left(\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x+K\right) \\
& =\frac{1}{2} e^{1 x} \sin 1 x+\frac{1}{2} e^{1 x} \cos 1 x+\left[\frac{K 1^{2}}{2}\right] \\
& =\frac{e^{1 x}}{2}(1 \sin 1 x+1 \cos 1 x)+\left[\frac{K 1^{2}}{2}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x= & \frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+C \\
& \text { Way } \# 2
\end{aligned}
$$

For this way, for each integration by parts, we let the $d v$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=\cos 1 x & d v_{1}=e^{1 x} d x \\
d u_{1}=-1 \sin 1 x d x & v_{1}=\frac{1}{1} e^{1 x}
\end{array}
$$

So, by integration by parts

$$
\int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \cos 1 x-\frac{-1}{1} \int e^{1 x} \sin 1 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=\sin 1 x & d v_{2}=e^{1 x} d x \\
d u_{2}=1 \cos 1 x d x & v_{2}=\frac{1}{1} e^{1 x}
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1}\left[\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1} \int e^{1 x} \cos 1 x d x\right] \\
& =\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x-\frac{1^{2}}{1^{2}} \int e^{1 x} \cos 1 x d x
\end{aligned}
$$

Now solving for $\int e^{1 x} \cos 1 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{1^{2}}{1^{2}}\right] \int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x+K
$$

and so

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\left[\frac{1^{2}}{1^{2}+1^{2}}\right]\left(\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x+K\right) \\
& =\frac{1}{2} e^{1 x} \cos 1 x+\frac{1}{2} e^{1 x} \sin 1 x+\left[\frac{K 1^{2}}{1^{2}+1^{2}}\right] \\
& =\frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+\left[\frac{K 1^{2}}{1^{2}+1^{2}}\right]
\end{aligned}
$$

Thus

$$
\int e^{1 x} \cos 1 x d x=\frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+C
$$

Doesn't Work Way

If you try two integration by part with letting the exponential function be with the u one time and the $d v$ the other time, then when you use the bring to the other side idea, you will get $0=0$, which is true but not helpful.
5. Investigate the convergence of

$$
\int_{x=1}^{x=\infty} \frac{1-e^{-x}}{x} d x
$$

TABLE 8.5

b	$\int_{1}^{b} \frac{1-e^{-x}}{x} d x$
2	0.5226637569
5	1.3912002736
10	2.0832053156
100	4.3857862516
1000	6.6883713446
10000	8.9909564376
100000	11.2935415306

EXAMPLE 9 Investigate the convergence of $\int_{1}^{\infty} \frac{1-e^{-x}}{x} d x$.
Solution The integrand suggests a comparison of $f(x)=\left(1-e^{-x}\right) / x$ with $g(x)=1 / x$. However, we cannot use the Direct Comparison Test because $f(x) \leq g(x)$ and the integral of $g(x)$ diverges. On the other hand, using the Limit Comparison Test we find that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty}\left(\frac{1-e^{-x}}{x}\right)\left(\frac{x}{1}\right)=\lim _{x \rightarrow \infty}\left(1-e^{-x}\right)=1
$$

which is a positive finite limit. Therefore, $\int_{1}^{\infty} \frac{1-e^{-x}}{x} d x$ diverges because $\int_{1}^{\infty} \frac{d x}{x}$ diverges. Approximations to the improper integral are given in Table 8.5. Note that the values do not appear to approach any fixed limiting value as $b \rightarrow \infty$.

5soln. This is Example 9 from $\S 8.8$ of our book by Thomas.
6. Evaluate

$$
\int_{x=0}^{x=1} \sin ^{4} x d x
$$

6soln. From Class Handout on Trig. Substitution: Example 4. $\int \sin ^{4} x d x$. $u-d u$ sub does not work (why? e.g.: $\int \sin ^{4} x d x \stackrel{u=\cos x}{=}-\int \sin ^{3} x[-\sin x d x]$).
For $\int \sin ^{n} x \cos ^{m} x d x$, with BOTH $m, n \in\{0,2,4,6, \ldots\}$, use the half-angle formulas.

$$
\begin{aligned}
\int \sin ^{4} x d x & \stackrel{\text { alg. }}{=} \int\left[\sin ^{2} x\right]^{2} d x \stackrel{\left(\frac{1}{2} \angle\right)}{=} \int\left[\frac{1-\cos (2 x)}{2}\right]^{2} d x \stackrel{\text { alg. }}{=} \frac{1}{4} \int\left[1-2 \cos (2 x)+\cos ^{2}(2 x)\right] d x \\
& \stackrel{\left(\frac{1}{2} \angle\right)}{=} \frac{1}{4} \int\left[1-2 \cos (2 x)+\frac{1+\cos (4 x)}{2}\right] d x \\
& =\frac{1}{4} \int d x-\frac{1}{4} \int 2 \cos (2 x) d x+\frac{1}{4} \cdot \frac{1}{2} \int d x+\frac{1}{4} \cdot \frac{1}{2} \int \cos (4 x) d x \\
& =\frac{1}{4}\left(1+\frac{1}{2}\right) \int d x-\frac{1}{4} \cdot \int \cos (2 x)[2 d x]+\left(\frac{1}{4} \cdot \frac{1}{2}\right) \cdot\left(\frac{1}{4}\right) \int \cos (4 x)[4 d x] \\
& =\frac{3}{8} x-\frac{1}{4} \sin (2 x)+\frac{1}{32} \sin (4 x)+C .
\end{aligned}
$$

So, since $\sin 0=0$,

$$
\begin{aligned}
\int_{x=0}^{x=1} \sin ^{4} x d x & \left.=\left[\frac{3}{8} x-\frac{1}{4} \sin (2 x)+\frac{1}{32} \sin (4 x)\right] \right\rvert\, \begin{array}{l}
x=1 \\
x=0 \\
x=0
\end{array} \\
& =\left[\frac{3}{8}-\frac{1}{4} \sin 2+\frac{1}{32} \sin 4\right]-[0-0+0] \\
& =\frac{3}{8}-\frac{1}{4} \sin 2+\frac{1}{32} \sin 4
\end{aligned}
$$

7. Evaluate

$$
\int_{x=5}^{x=10} \frac{\sqrt{x^{2}-25}}{x} d x
$$

AND specify the initial substitution.
7soln. The integrand has a $u^{2}-a^{2}$, so we let $u=a \sec \theta \cdot x=5 \sec \theta \quad$ so $\quad d x=5 \sec \theta \tan \theta d \theta$

Thus,

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-25}}{x} d x & =\int \frac{\sqrt{25 \sec ^{2} \theta-25}}{5 \sec \theta}(5 \sec \theta \tan \theta) d \theta \\
& =\int \frac{5|\tan \theta|}{5 \sec \theta}(5 \sec \theta \tan \theta) d \theta \\
& =5 \int \tan ^{2} \theta d \theta \quad \quad \tan \theta \geq 0 \sin \alpha \| \leq \pi \cos \pi / 2 \\
& =5 \int\left(\sec ^{2} \theta-1\right) d \theta=5 \tan \theta-5 \theta+C
\end{aligned}
$$

To express the solution in terms of x, we will represent the substitution $x=5 \sec \theta$ got metrically by the triangle in Figure 8.4.5, from which we obtain

$$
\tan \theta=\frac{\sqrt{x^{2}-25}}{5}
$$

Figure 8.4 .5
From this and the fact that the substitution can be expressed as $\theta=\sec ^{-1}(x / 5)$, we otaif

$$
\int \frac{\sqrt{x^{2}-25}}{x} d x=\sqrt{x^{2}-25}-5 \sec ^{-1}\left(\frac{x}{5}\right)+C
$$

- Check $D_{x}\left[\left(x^{2}-25\right)^{1 / 2}-5 \sec ^{-1}\left(\frac{x}{5}\right)\right]$
$=\frac{1}{2}\left(x^{2}-25\right)^{-1 / 2}(2 x)-5 \frac{1}{\left|\frac{x}{5}\right| \sqrt{\left(\frac{x}{5}\right)^{2}}-1} \cdot \frac{1}{5}$

$$
=\frac{x}{\left(x^{2}-25\right)^{1 / 2}} \quad \frac{1}{\frac{x}{5} \sqrt{\frac{x^{2}}{25}-\frac{25}{25}}} \quad \text { (know } x \geqslant 5 \text {) }
$$

$$
=\frac{x}{\left(x^{2}-25\right)^{1 / 2}}-\frac{25}{x\left(x^{2}-25\right)^{1 / 2}}=\frac{\left(x^{2}-25\right)}{x\left(x^{2}-25\right)^{1 / 2}} \cdot \frac{\left(x^{2}-25\right)^{1 / 2}}{\left(x^{2}-25\right)^{1 / 2}}
$$

$$
=\frac{\left(x^{2}-25\right)\left(x^{2}-25\right)^{k 2}}{x\left(x^{2}-25\right)}=\frac{\sqrt{x^{2}-25}}{x} \cdot 1
$$

$$
\left.\int_{5}^{10} \frac{\sqrt{x^{2}-25}}{x} d x=\sqrt{x^{2}-25}-5 \sec ^{-1}\left(\frac{x}{3}\right) \right\rvert\, x=5
$$

$$
=\left[\frac{x}{100-25}-5 \sec ^{-1} 2\right]-[0-5 \sec 1]=
$$

$$
=\sqrt{75}-5 \cdot \frac{\pi}{3}=5 \sqrt{3}-5\left(\frac{\pi}{3}\right)=5\left(\sqrt{3}-\frac{\pi}{3}\right)
$$

8. Evaluate

$$
\int_{x=1}^{x=3} \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} d x
$$

8soln.

$$
\frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}}=\frac{5 x^{2}+3 x-2}{x^{2}(x+2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+2}
$$ Multiply by $x^{2}(x+2)$ to

$$
\text { get } 5 x^{2}+3 x-2=A x(x+2)+B(x+2)+C x^{2} \cdot \operatorname{Set} x=-2 \text { to get } C=3, \text { and take }
$$

$$
x=0 \text { to get } B=-1 \text {. Equating the coefficients of } x^{2} \text { gives } 5=A+C \Rightarrow A=2 . \text { So }
$$

$$
\int \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} d x=\int\left(\frac{2}{x}-\frac{1}{x^{2}}+\frac{3}{x+2}\right) d x=2 \ln |x|+\frac{1}{x}+3 \ln |x+2|+C .
$$

- Check $D_{x}\left[2 \ln |x|+x^{-1}+3 \ln |x+2|\right]=\frac{2}{x}+-1 x^{-2}+\frac{3}{x+2}$

$$
=\frac{2}{x}-\frac{1}{x^{2}}+\frac{3}{x+2}=\frac{2 x(x+2)-(x+2)+3 x^{2}}{\left.x^{2} x+2\right)}=\frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}}
$$

- $\left.\left[3 \ln |x+2|+2 \ln x+\frac{1}{x}\right] \right\rvert\, \begin{aligned} & x=3 \\ & x=1\end{aligned}=$

$$
\left[3 \ln 5+2 \ln 3+\frac{1}{3}\right]-[3 \ln 3+\underbrace{2 \ln 1}_{=0}+1]=
$$

$$
3 \ln 5-\ln 3-\frac{2}{3}
$$

9. Evaluate

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}
$$

Answer:
9soln.
EXAMPLE 2 Evaluate

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}
$$

Solution According to the definition (Part 3), we can choose $c=0$ and write

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\int_{-\infty}^{0} \frac{d x}{1+x^{2}}+\int_{0}^{\infty} \frac{d x}{1+x^{2}}
$$

Next we evaluate each improper integral on the right side of the equation above.

$$
\begin{aligned}
\int_{-\infty}^{0} \frac{d x}{1+x^{2}} & =\lim _{a \rightarrow-\infty} \int_{a}^{0} \frac{d x}{1+x^{2}} \\
& \left.=\lim _{a \rightarrow-\infty} \tan ^{-1} x\right]_{a}^{0} \\
& =\lim _{a \rightarrow-\infty}\left(\tan ^{-1} 0-\tan ^{-1} a\right)=0-\left(-\frac{\pi}{2}\right)=\frac{\pi}{2} \\
\int_{0}^{\infty} \frac{d x}{1+x^{2}} & =\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{1+x^{2}} \\
& \left.=\lim _{b \rightarrow \infty} \tan ^{-1} x\right]_{0}^{b} \\
& =\lim _{b \rightarrow \infty}\left(\tan ^{-1} b-\tan ^{-1} 0\right)=\frac{\pi}{2}-0=\frac{\pi}{2}
\end{aligned}
$$

Thus,

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}=\frac{\pi}{2}+\frac{\pi}{2}=\pi
$$

Since $1 /\left(1+x^{2}\right)>0$, the improper integral can be interpreted as the (finite) area beneath the curve and above the x-axis (Figure 8.15).

FIGURE 8.15 The area under this curve is finite (Example 2).
10. For which value of p does

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=1.25 ?
$$

10soln. First compute

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\left.\lim _{t \rightarrow 0+} \int_{t}^{1} x^{-p} d x \stackrel{p \not \equiv 1}{=} \lim _{t \rightarrow 0+} \frac{x^{1-p}}{1-p}\right|_{t} ^{1}=\left.\frac{1}{1-p} \lim _{t \rightarrow 0+} x^{1-p}\right|_{t} ^{1}=\frac{1}{1-p} \lim _{t \rightarrow 0+}\left[1-t^{1-p}\right]
$$

If $1-p>0$, or equivalently $1>p$, then $\lim _{t \rightarrow 0+} t^{1-p}=0$ and so

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\frac{1}{1-p} \lim _{t \rightarrow 0+}\left[1-t^{1-p}\right]=\frac{1}{1-p}[1-0]=\frac{1}{1-p}
$$

If $1-p<0$, or equivalently $1<p$, then $\lim _{t \rightarrow 0+} t^{1-p}=\infty$ and so

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\frac{1}{1-p} \lim _{t \rightarrow 0+}\left[1-t^{1-p}\right]=\infty
$$

If $p=1$, then

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=\lim _{t \rightarrow 0+} \int_{t}^{1} \frac{1}{x} d x=\left.\lim _{t \rightarrow 0+} \ln x\right|_{t} ^{1}=\lim _{t \rightarrow 0+}[0-\ln t]=\infty
$$

So we need

$$
p<1 \quad \text { and } \quad \frac{1}{1-p}=1.25
$$

Note

$$
\frac{1}{1-p}=1.25=\frac{5}{4}=\frac{1}{\frac{4}{5}} \quad \Leftrightarrow \quad 1-p=\frac{4}{5} \quad \Leftrightarrow \quad p=1-\frac{4}{5}=\frac{1}{5}=0.2 .
$$

11. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{3}} d x
$$

11soln.

$$
\begin{aligned}
& \int_{x=1}^{x} x^{-3} d x=\frac{x^{-2}}{-2}+c \\
& \int_{x=0} x^{-3} d x=\left.\lim _{a \rightarrow 0^{+}} \frac{x^{-2}}{-2}\right|_{x=a} ^{x=1}=\frac{1}{2} \lim _{a \rightarrow 0^{+}}\left[\frac{1}{x^{2}}\right]_{x=1}^{x=a}= \\
& \frac{1}{2} \lim _{x \rightarrow 0^{+}}\left[\frac{1}{a^{2}}-1\right]=\infty, \quad \text { Similarly, } \int_{-1}^{0} x^{-3} d x=-\infty \\
& \int_{-1}^{1} x^{-3} d x=\int_{-1}^{0} x^{-3} d x+\int_{0}^{1} x^{-3} d x=-\infty+\infty \text { Io DUE }
\end{aligned}
$$

12. Limit of a sequence. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{25 n^{3}+4 n^{2}+n-5}}{7 n^{\frac{3}{2}}+6 n-1}
$$

12soln.

13. Consider the formal series

$$
\sum_{n=1}^{\infty} \frac{1}{n+3^{n}}
$$

${ }^{13 s o l n}$. This is the first problem from the 38 Serious Series Problems.

$$
\begin{aligned}
& \frac{1}{n+3^{n}}<\frac{1}{3^{n}}=\left(\frac{1}{3}\right)^{n} \text { for all } n \geq 1 . \sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n} \text { is a convergent geometric series }\left[|r|=\frac{1}{3}<1\right] \text {, so } \sum_{n=1}^{\infty} \frac{1}{n+3^{n}} \\
& \text { converges by the Comparison Test. }
\end{aligned}
$$

© Note that $\frac{1}{n+3^{n}} \neq \frac{1}{n}+\frac{1}{3^{n}} \quad \ldots \quad$ unfortunately, some folks told me they were equal. ©
14. Consider the formal series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(n+2)(n+7)}
$$

14soln. $\frac{1}{(n+2)(n+7)} \stackrel{n \text { big }}{\sim} \frac{1}{(n)(n)}=\frac{1}{n^{2}}$. So let $b_{n}=\frac{1}{n^{2}}$ and $a_{n}=\frac{(-1)^{n}}{(n+2)(n+7)}$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{1}{(n+2)(n+7)} \cdot \frac{n^{2}}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+2)(n+7)} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}}{\left(\frac{n+2}{n}\right)\left(\frac{n+7}{n}\right)} \lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{2}{n}\right)\left(1+\frac{7}{n}\right)}=\frac{1}{(1+0)(1+0)}=1
\end{aligned}
$$

Since $0<\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{b_{n}}<\infty$, by the LCT, $\sum b_{n}$ and $\sum\left|a_{n}\right|$ do the same thing.
We know $\sum b_{n}=\sum^{b_{n}} \frac{1}{n^{2}}$ (p-series, $p=2>1$ so) converges.
So $\sum\left|a_{n}\right|$ converges. So $\sum a_{n}$ is absolutely convergent.
15. By using the Limit Comparison Test, one can show that the formal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{\sqrt{(n+1)(n+2)(n+3)(n+4)}} \tag{15}
\end{equation*}
$$

is:
${ }^{15 s o l n}$. Let

$$
a_{n}=\frac{n}{\sqrt{(n+1)(n+2)(n+3)(n+4)}}
$$

For n sufficiently big,

So we let $b_{n}=\frac{1}{n}$ and compute

$$
\begin{aligned}
\frac{a_{n}}{b_{n}} & =\frac{n}{\sqrt{(n+1)(n+2)(n+3)(n+4)}} \frac{n}{1}=\frac{n^{2}}{[(n+1)(n+2)(n+3)(n+4)]^{1 / 2}} \\
& =\left[\frac{n^{4}}{(n+1)(n+2)(n+3)(n+4)}\right]^{1 / 2}=\left[\frac{n}{(n+1)} \frac{n}{(n+2)} \frac{n}{(n+3)} \frac{n}{(n+4)}\right]^{1 / 2} \\
& \xrightarrow{n \rightarrow \infty}[(1)(1)(1)(1)]^{1 / 2}=1
\end{aligned}
$$

Since $0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty$, the LCT says the $\sum a_{n}$ and $\sum b_{n}$ do the same thing. Since $\sum b_{n}$ is a p-series with $p=1 \leq 1$, the $\sum b_{n}$ diverges. So the $\sum a_{n}$ diverges.
16. Find all real numbers r satisfying that

$$
\sum_{n=2}^{\infty} r^{n}=\frac{1}{6}
$$

16soln. Soln: $\frac{-1}{2}$ and $\frac{1}{3}$
First note that for the series $\sum_{n=2}^{\infty} r^{n}$ to converge (so that the problem even makes sense), we need

$$
|r|<1
$$

So let $|r|<1$. Next, to find the sum $\sum_{n=2}^{\infty} r^{n}$, consider the partial sums $s_{n} \stackrel{\text { def }}{=} r^{2}+r^{3}+\ldots+$ $r^{n-1}+r^{n}$.
Cancellation Heaven occurs with a geometric series when one computes $s_{\underline{n}}-r s_{\underline{n}}$. Let's see why.

$$
\begin{aligned}
s_{n} & =r^{2}+r^{3}+\ldots+r^{n-1}+r^{n} \\
r s_{n} \quad & =r^{3}+r^{4}+\ldots+r^{n}+r^{n+1}
\end{aligned}
$$

Do you see the cancellation that would occur if we take $s_{n}-r s_{n}$?

substract

$$
(1-r) s_{n} \stackrel{(A)}{=} s_{n}-r s_{n}=r^{2} \quad-r^{n+1}
$$

and since $r \neq 1$, then

$$
s_{n}=\frac{r^{2}-r^{n+1}}{1-r} \quad \xrightarrow{\text { since }|r|<1} \quad \frac{r^{2}}{1-r}=\sum_{n=2}^{\infty} r^{n} .
$$

So we are looking for $r \in \mathbb{R}$ so that $|r|<1$ and $\frac{r^{2}}{1-r}=\frac{1}{6}$. Note $\left[\frac{r^{2}}{1-r}=\frac{1}{6}\right] \Leftrightarrow\left[6 r^{2}=1-r\right] \Leftrightarrow$ $\left[6 r^{2}+r-1=0\right] \Leftrightarrow$

$$
r=\frac{-1 \pm \sqrt{1+4(6)}}{2(6)}=\frac{-1 \pm 5}{12}=\left\{\begin{array}{l}
\frac{-1+5}{12}=\frac{4}{12}=\frac{1}{3} \\
\frac{-1-5}{12}=-\frac{6}{12}=-\frac{1}{2}
\end{array}\right.
$$

17. The series

$$
\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln n}
$$

is

17soln.

$$
\begin{aligned}
& \text { converges conditionally since } f(x)=\frac{1}{x \ln x} \Rightarrow f^{\prime}(x)=-\frac{[\ln (x)+1]}{(x \ln x)^{2}}<0 \Rightarrow f(x) \text { is decreasing } \Rightarrow u_{n}>u_{n+1}>0 \text { for } \\
& n \geq 2 \text { and } \lim _{n \rightarrow \infty} \frac{1}{n \ln n}=0 \Rightarrow \text { convergence; but by the Integral Test, } \int_{2}^{\infty} \frac{d x}{x \ln x}=\lim _{b \rightarrow \infty} \int_{2}^{b}\left(\frac{\left(\frac{1}{x}\right)}{\ln x}\right) d x \\
& =\lim _{b \rightarrow \infty}[\ln (\ln x)]_{2}^{b}=\lim _{b \rightarrow \infty}[\ln (\ln b)-\ln (\ln 2)]=\infty \Rightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n \ln n} \text { diverges }
\end{aligned}
$$

18. What is the smallest integer N such that the Alternating Series Estimate/Remainder Theorem guarentees that

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}-\sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2}}\right| \leq 0.05 ?
$$

Note that $0.05=\frac{0.05}{1.0000}=\frac{5}{100}=\frac{1}{20}$.
18soln. Note that $0 \leq \frac{1}{n^{2}} \searrow 0$ so the AST applies and tells us that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ converges and that

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}-\sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2}}\right| \leq \frac{1}{(N+1)^{2}}
$$

So

$$
\left|\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}-\sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2}}\right| \stackrel{\text { have }}{\leq} \frac{1}{(N+1)^{2}} \stackrel{\text { want }}{\leq} \frac{1}{20}
$$

Note

$$
\left[\frac{1}{(N+1)^{2}} \leq \frac{1}{20}\right] \Leftrightarrow\left[20 \leq(N+1)^{2}\right]
$$

If $N=3$, then $(N+1)^{2}=(3+1)^{2}=4^{2}=16<20$.
If $N=4$, the $(N+1)^{2}=(4+1)^{2}=5^{2}=25 \geq 20$.
19. Find the $4^{\text {th }}$ order Maclaurin polynomial for

$$
f(x)=\frac{1}{(x+1)^{3}}
$$

19soln. ans: $P_{4}(x)=1-3 x+6 x^{2}-10 x^{3}+15 x^{4}$.

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$c_{n}=\frac{f^{(n)}(0)}{n!}$
0	$(x+1)^{-3}$	$\frac{1}{0!}=1$	
1	$-3(x+1)^{-4}$	-3	$\frac{-3}{1!}=-3$
2	$+3 \cdot 4(x+1)^{-5}$	$+3 \cdot 4$	$\frac{3 \cdot 4}{2!}=\frac{3 \cdot 4^{2}}{2}=6$
3	$-3 \cdot 4.5(x+1)^{-6}$	$-3 \cdot 4.5$	$\frac{-3 \cdot 4 \cdot 5}{3!}=\frac{-3 \cdot 4^{2} \cdot 5}{1 \cdot 2 \cdot 3}=-10$
4	$+3.4 \cdot 5 \cdot 6(x+1)^{-7}$	$+3 \cdot 4 \cdot 5 \cdot 6$	$\frac{3 \cdot 4 \cdot 5 \cdot 6}{4!}=\frac{3 \cdot 4 \cdot 5 \cdot 6^{3}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 15}=15$

Note: Use the term Maclaurin so we know the center is $x_{0}=0$.
20. Find the $10^{\text {th }}$-order Taylor polynomial $y=P_{10}(x)$, centered about $x_{0}=17$, of the function

$$
f(x)=5+6 x^{7}
$$

20soln. ans: $P_{10}(x)=5+6 x^{7}$

Note $f^{(n)}(x)=0$ for each $n \geq 8$ and $x \in \mathbb{R}$. Let's following notation from Probelm $\mathbf{0 B}$. If $N \geq 7$, then $f^{(N+1)}(c)=0$ for any $c \in \mathbb{R}$ and so

$$
\left|R_{N}(x)\right|=\left|\frac{f^{(N+1)}(c)}{(N+1)!}(x-17)^{N+1}\right|=\frac{0}{(N+1)!}|x-17|^{N+1}=0,
$$

and so $P_{N}(x)=f(x)$. So $p_{10}(x)=f(x)$.
21. Find a power series representation for

$$
f(x)=\ln (10-x)
$$

Hint: $\ln (a b)=\ln a+\ln b$.
21soln. ans: $\ln 10-\sum_{n=1}^{\infty} \frac{x^{n}}{n 10^{n}}$

$$
\begin{aligned}
& \ln (10-x)=\ln \left(10\left(1-\frac{x}{10}\right)\right)=\ln 10+\ln \left[1+\left(\frac{-x}{10}\right)\right] \leftarrow \text { used a commonly used } \\
& \text { Taylor Series" } \\
& =\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\left(\frac{-x}{10}\right)^{n}=\ln 10+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(-1)^{n} \frac{x^{n}}{10^{n}} \\
& =\ln 10-\sum_{n=1}^{\infty} \frac{x^{n}}{n 10^{n}} \\
& {\left[(-1)^{n+1}(-1)^{n}=(-1)^{2 n+1}=(-1)^{2 n}(-1)^{1}=-1\right. \text {. }} \\
& \text { I forgot to ask when is this expansion valid so let's do: } \\
& \text { Valid } \Leftrightarrow-1<-\frac{x}{10} \leq 1 \quad \Longleftrightarrow-10<x<10
\end{aligned}
$$

22. Consider the function $f(x)=e^{x}$ over the interval $(-1,3)$. The $4^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}=\sum_{n=0}^{4} \frac{x^{n}}{n!}
$$

The $4^{\text {th }}$ order Remainder term $R_{4}(x)$ is defined by $R_{4}(x)=f(x)-P_{4}(x)$ and so $e^{x} \approx P_{4}(x)$ where the approximation is within an error of $\left|R_{4}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{4}(x)\right|$ that is valid for each $x \in(-1,3)$.
22soln. ans: $\frac{\left(e^{3}\right)\left(3^{5}\right)}{5!}$

$$
\begin{aligned}
& \text { For each } x \in(-1,3) \text {, the exists } c \text { between } x \& x_{0} \\
& \text { (so } c \text { is also in }(-1,3) \text {), so that: } \\
& \left|R_{4}(x)\right| \frac{\text { big }}{\text { theorm }}\left|\frac{f^{(5)}(c)}{5!} x^{5}\right|=\frac{e^{c}|x|^{5}}{5!} \leq \frac{e^{3} \cdot 3^{5}}{5!}
\end{aligned}
$$

23. Suppose that the interval of convergence of the series $\sum_{n=1}^{\infty} c_{n}\left(x-x_{0}\right)^{n}$ is $\left(x_{0}-R, x_{0}+R\right]$.

What can be said about the series at $x=x_{0}+R$?
23 soln. ans: It must be conditionally convergent.

> 63. Prove: If the interval of convergence of the series $\sum_{k=0}^{e} c_{k}\left(x-x_{0}\right)^{k}$ is $\left(x_{0}-R, x_{0}+R\right]$, then the series converges conditionally at $x_{0}+R$.
63. The assumption is that $\sum_{k=0}^{\infty} c_{k} R^{k}$ is convergent and $\sum_{k=0}^{\infty} c_{k}(-R)^{k}$ is divergent. Suppose that $\sum_{k=0}^{\infty} c_{k} R^{k}$ is absolutely convergent then $\sum_{k=0}^{\infty} c_{k}(-R)^{k}$ is also absolutely convergent and hence convergent because $\left|c_{k} R^{k}\right|=\left|c_{k}(-R)^{k}\right|$, which contradicts the assumption that $\sum_{k=0}^{\infty} c_{k}(-R)^{k}$ is divergent so $\sum_{k=0}^{\infty} c_{k} R^{k}$ must be conditionally convergent.
24. Suppose that the power series $\sum_{n=1}^{\infty} c_{n}(x-10)^{n}$ has interval of convergence $(1,19)$.

What is the interval of convergence of the power series $\sum_{n=1}^{\infty} c_{n} x^{2 n}$?
24soln. ans: $(-3,3)$

$$
\begin{aligned}
& \sum c_{n} x^{2 n} \text { converges } \Leftrightarrow \sum c_{n}\left(x^{2}\right)^{n} \text { conv. } \Leftrightarrow \sum c_{n}\left[\left(x^{2}+10\right)-10\right]^{n} \operatorname{conv} . \\
& \stackrel{\text { given }}{\Longleftrightarrow}+1<x^{2}+10<19 \Leftrightarrow-9<x^{2}<9 \Leftrightarrow-3<x<3 .
\end{aligned}
$$

25. Describe the motion of a puffo whose position (x, y) is parameterized by

$$
\begin{aligned}
& x=6 \sin t \\
& y=3 \cos t
\end{aligned}
$$

for $0 \leq t \leq 2 \pi$.
25soln. ans: Moves once clockwise along the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$ starting and ending at (0,3).
Since $\left[\frac{x(t)}{6}\right]^{2}+\left[\frac{y(t)}{3}\right]^{2}=[\sin t]^{2}+[\cos t]^{2}=1$,
the puffo is moving along the ellipse $\left[\frac{x}{6}\right]^{2}+\left[\frac{y}{3}\right]^{2}=1$, i.e., along the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{9}=1$.
He starts at $(x(0), y(0))=(6 \sin 0,3 \cos 0)=(0,3)$.
He finishes at $(x(2 \pi), y(2 \pi))=(6 \sin 2 \pi, 3 \cos 2 \pi)=(0,3)$.
As he moves from $t=0$ to $t=2 \pi$, he traces out the ellipse one time.
To figure out if he is moving CW or CCW, note $\left(x\left(\frac{\pi}{2}\right), y\left(\frac{\pi}{2}\right)\right)=\left(6 \sin \frac{\pi}{2}, 3 \cos \frac{\pi}{2}\right)=(6,0)$.
So Mr. Puffo is moving clockwise.
26. Eliminate the parameter to find a Cartesian equation of the curve

$$
\begin{aligned}
& x=5 e^{t} \\
& y=21 e^{-t} .
\end{aligned}
$$

26soln. ans: $y=\frac{105}{x}$

$$
y(t)=21 e^{-t}=\frac{21}{e^{t}}=\frac{(5)(21)}{5 e^{t}}=\frac{105}{x(t)} .
$$

27. Find the arc length of the curve

$$
\begin{aligned}
& x=3 t^{2} \\
& y=2 t^{3}
\end{aligned}
$$

for $0 \leq t \leq 3$
27soln. ans: $20 \sqrt{10}-2$

$$
\begin{aligned}
\mathrm{AL}=\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t & =\int_{t=0}^{t=3} \sqrt{(6 t)^{2}+\left(6 t^{2}\right)^{2}} d t=\int_{t=0}^{t=3} \sqrt{6^{2} t^{2}+6^{2} t^{4}} d t \\
& =\int_{t=0}^{t=3} \sqrt{6^{2} t^{2}\left(1+t^{2}\right)} d t \\
& =\int_{t=0}^{t=3} 6 t \sqrt{1+t^{2}} d t \quad=3 \int_{t=0}^{t=3}(2 t)\left(1+t^{2}\right)^{1 / 2} d t \\
\begin{array}{ll}
\text { let } u=1+t^{2} \\
\text { so } d u=2 t d t
\end{array} \int_{u=1}^{u=10} u^{1 / 2} d u & =\left.(3)\left(\frac{2}{3}\right) u^{3 / 2}\right|_{u=1} ^{u=10}
\end{aligned} \quad=\left.2 u \sqrt{u}\right|_{u=1} ^{u=10}=20 \sqrt{10}-2 . .
$$

28. Find a parameterization for the line segment from $(-1,2)$ to $(10,-6)$ for $0 \leq t \leq 1$.

28soln. ans: $x=-1+11 t$ and $y=2-8 t$

$$
\begin{aligned}
& x(t)=-1+\left(10-\left({ }^{-} 1\right)\right) t=-1+11 t \\
& y(t)=2+(-6-2) t=2-8 t .
\end{aligned}
$$

29. Find an equation of the tangent line to the curve at the point corresponding to $t=11 \pi$.

$$
\begin{aligned}
& x=t \sin t \\
& y=t \cos t
\end{aligned}
$$

29soln. ans: $y=\frac{x}{11 \pi}-11 \pi$

$$
\begin{aligned}
& (x(11 \pi), y(11 \pi))=(0,-11 \pi) \\
& \qquad\left.\frac{d y}{d x}\right|_{t=11 \pi}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right|_{t=11 \pi}=\left.\frac{\cos t-t \sin t}{\sin t+t \cos t}\right|_{t=11 \pi}=\frac{-1-0}{0-11 \pi}=\frac{1}{11 \pi}
\end{aligned}
$$

So equation of tangent line to curve when $t=11 \pi$ is

$$
\begin{aligned}
\left(y-{ }^{-} 11 \pi\right) & =\frac{1}{11 \pi}(x-0) \\
y+11 \pi & =\frac{1}{11 \pi} x \\
y & =\frac{1}{11 \pi} x-11 \pi
\end{aligned}
$$

30. Prof. Girardi likes

> Good Luck in your math fun to come!

