| MARK BOX |  |  |
| :---: | :---: | :---: |
| PROBLEM | POINTS |  |
| 0 | 20 |  |
| $1-8$ | $40=8 \mathrm{x} 5$ |  |
| 9 | 10 |  |
| 10 | 10 |  |
| 11 | 10 |  |
| 12 | 10 |  |
| $\%$ | 100 |  |

## HAND IN PART

NAME: Solutions

PIN: 17

## INSTRUCTIONS

- This exam comes in two parts.
(1) HAND IN PART. Hand in only this part.
(2) STATEMENT OF MULTIPLE CHOICE PROBLEMS. Do not hand in this part.

You can take this part home to learn from and to check your answers once the solutions are posted.

- On Problem 0, fill in the blanks. As you know, if you do not make at least half of the points on Problem 0, then your score for the entire exam will be whatever you made on Problem 0.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, any device with which you can connect to the internet, and personal notes. Unauthorized materials (including cell phones, as well as your watch) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a student's request, I will project my watch upon the projector screen.
- Cheating is grounds for a F in the course.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- Upon request, you will be given as much (blank) scratch paper as you need.
- The mark box above indicates the problems along with their points. Make sure your copy of exam has all the problems.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7, 8.8 .


## Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.
$\qquad$
0. Fill-in the blanks.
0.1. $\arcsin \left(-\frac{1}{2}\right)=\frac{-\pi}{6} \quad$ (Your answers should be an angle in RADIANS.)
0.2. Double-angle Formula. Your answer should involve trig functions of $\theta$, and not of $2 \theta$.
$\sin (2 \theta)=$ $\qquad$ $2 \sin \theta \cos \theta$
0.3. Since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship between tangent (i.e., tan) and secant (i.e., sec) is

$$
1+\tan ^{2} \theta=\sec ^{2} \theta
$$

0.4. $\int \frac{d u}{u} \stackrel{u \neq 0}{=}$
$\ln |u|$ $+\mathrm{C}$
0.5. $\int u^{n} d u \stackrel{n \neq-1}{=}$ $\frac{u^{n+1}}{n+1}+\mathrm{C}$
0.6. $\int e^{u} d u=$ $\qquad$ $e^{u}$ $+\mathrm{C}$
0.7. $\int \cos u d u=\square \sin u+C$
0.8. $\int \sec ^{2} u d u=\square \tan u+C$
0.9. $\int \sec u \tan u d u=\square+\sec u \quad+C$
0.10. $\int \sin u d u=$ $\qquad$ $+C$
0.11. $\int \csc ^{2} u d u=$ $\qquad$ $+C$
0.12. $\int \csc u \cot u d u=$ $\qquad$ $-\csc u \quad+C$
0.13. $\int \tan u d u=$ $\qquad$
0.14. $\int \cot u d u=$ $\qquad$ $-\ln |\csc u| \stackrel{o r}{=} \ln |\sin u| \quad+C$
0.15. $\int \sec u d u=$ $\qquad$ $+C$
0.16. $\int \frac{1}{a^{2}+u^{2}} d u \stackrel{a>0}{=}$
$\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right) \quad+C$
0.17. Trig sub.: (recall that the integrand is the function you are integrating) if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ $\qquad$ $a \sin \theta$
0.18. Trig sub.: if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ $\qquad$
0.19. Trig sub.: if the integrand involves $u^{2}+a^{2}$, then one makes the substitution $u=$ $\qquad$
0.20. Integration by parts formula: $\int u d v=$ $\qquad$

## MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table below your solution to the multiple choice problems.
- You may choice up to 2 answers for each multiple choice problem. The scoring is as follows.
* For a problem with precisely one answer marked and the answer is correct, 5 points.
* For a problem with precisely two answers marked, one of which is correct, 2 points.
* All other cases, 0 points.
- Fill in the "number of solutions circled" column. (Worth a total of 1 point of extra credit.)

| Table for Your Muliple Choice Solutions |  |  |  |  |  |  | Do Not Write Below |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Problem |  |  |  |  |  | $\begin{array}{\|\|l\|} \hline \hline \begin{array}{l} \text { number of } \\ \text { solutions } \\ \text { circled } \end{array} \\ \hline \hline \end{array}$ | 1 | 2 | B | x |
| 1 | (1a) | 1 b | 1 c | 1d | 1 e |  |  |  |  |  |
| 2 | 2a | 2b | 2 c | (2d) | 2 e |  |  |  |  |  |
| 3 | (3a) | 3 b | 3 c | 3d | 3 e |  |  |  |  |  |
| 4 | (4a) | 4 b | 4 c | 4d | 4 e |  |  |  |  |  |
| 5 | 5a | (5b) | 5 c | 5d | 5 e |  |  |  |  |  |
| 6 | 6a | 6 b | (6c) | 6d | 6 e |  |  |  |  |  |
| 7 | 7a | 7 b | (7c) | 7d | 7 e |  |  |  |  |  |
| 8 | 8a | 8b | 8 c | (8d) | 8 e |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 5 | 2 | 0 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | Extra Credit: |  |  |  |

9. Show all your work below the box then put answer in the box. Work in a correct logical fashion.

$$
\begin{aligned}
& \int \frac{1}{x(x+1)^{2}} d x=\ln |x|-\ln |x+1|+\frac{1}{x+1}+C \quad \text { also acceptable } \quad \ln \left|\frac{x}{x+1}\right|+\frac{1}{x+1}+\mathrm{C} \\
& \int \frac{1}{x(x+1)^{2}} d x \\
& \longrightarrow \frac{A}{x}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} \\
& 1=A\left(x^{2}+2 x+1\right)^{2}+B x(x+1)+C(x) \\
& x^{2}: A+B=0 \quad B=-1 \\
& X: 2 A+B+C=0 \quad C=-1 \\
& \begin{array}{l}
x^{0}: A=1 \\
\int \frac{1}{x+1} d x+-\int \frac{1}{(x+1)^{2}} d y
\end{array} \\
& =\frac{\ln |x|-\ln |x+1|}{} \underbrace{\downarrow}_{\substack{(x+1)^{2}}} d x \quad u=x+1 \quad d u=d x \\
& =\int \frac{1}{x} d x+-\int \frac{1}{x+1} d x+-\int \frac{1}{(x+1)^{2}} d x \\
& =\ln |x|-\ln |x+1|+\frac{1}{x+1}+1
\end{aligned}
$$

10. Show all your work below the box then put answer in the box. Work in a correct logical fashion.

$$
\int \frac{1}{\sqrt{x^{2}+4}} d x=\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+C \quad \text { also acceptable is } \quad \ln \left|\sqrt{x^{2}+4}+x\right|+\mathrm{C} \mid
$$

## On this problem, your final answer should not have a trig function in it.

This is number 10 from the 100 Integrals.

$$
\begin{aligned}
& x=2 \tan \theta \\
& d x=2 \sec ^{2} \theta d \theta \\
& \int \frac{1}{\sqrt{x^{2}+4}} d x=\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{(2 \tan \theta)^{2}+4}}=\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4 \tan ^{2} \theta+4}}=\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4\left(\tan ^{2} \theta+1\right)}}=\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4 \sec ^{2} \theta}} \\
& \int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4 \sec ^{2} \theta}}=\int \frac{2 \sec ^{2} \theta d \theta}{2 \sec \theta}=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C
\end{aligned}
$$

$$
\frac{x}{2}=\tan \theta \quad \text { SOHCAHTOA }
$$

$$
\text { ( } \sqrt{x^{2}+4} \text { and } \operatorname{sen} \theta=\frac{x}{2} \text { thus } \operatorname{sn}|\sec \theta+\tan \theta|=\ln \left\lvert\, \frac{\sqrt{x^{2}+4}}{2} \quad\right. \text { and }+x
$$

$$
\begin{aligned}
& x^{2}+2^{2}=c^{2} \\
& \sqrt{x^{2}+4}=c
\end{aligned}
$$

Why are both solutions acceptable? Well, they are both correct since

$$
\begin{aligned}
\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+K & =\ln \left|\left(\frac{1}{2}\right)\left(\sqrt{x^{2}+4}+x\right)\right|+K=\ln \frac{1}{2}+\ln \left|\sqrt{x^{2}+4}+x\right|+K \\
& =\ln \left|\sqrt{x^{2}+4}+x\right|+\left(K+\ln \frac{1}{2}\right)
\end{aligned}
$$

11. Show all your work below the box then put answer in the box. Work in a correct logical fashion.

$$
\int e^{3 x} \cos 2 x d x=\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)
$$

$$
+\mathrm{C}
$$

11soln. We will use two integration by parts and the bring to the other side idea. For the two integration by parts, put the expontential function with either the $u$ 's both times or the $d v$ 's both times.

Indefinite Integral: Way \# 1
For this way, for each integration by parts, we let the $u$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=e^{3 x} & d v_{1}=\cos 2 x d x \\
d u_{1}=3 e^{3 x} d x & v_{1}=\frac{1}{2} \sin 2 x
\end{array}
$$

So by integration by parts

$$
\int e^{3 x} \cos 2 x d x=\frac{1}{2} e^{3 x} \sin 2 x-\frac{3}{2} \int e^{3 x} \sin 2 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=e^{3 x} & d v_{2}=\sin 2 x d x \\
d u_{2}=3 e^{3 x} d x & v_{2}=\frac{-1}{2} \cos 2 x
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\frac{1}{2} e^{3 x} \sin 2 x-\frac{3}{2}\left[\frac{-1}{2} e^{3 x} \cos 2 x-\frac{-3}{2} \int e^{3 x} \cos 2 x d x\right] \\
& =\frac{1}{2} e^{3 x} \sin 2 x+\frac{3}{2^{2}} e^{3 x} \cos 2 x-\frac{3^{2}}{2^{2}} \int e^{3 x} \cos 2 x d x
\end{aligned}
$$

Now solving for $\int e^{3 x} \cos 2 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{3^{2}}{2^{2}}\right] \int e^{3 x} \cos 2 x d x=\frac{1}{2} e^{3 x} \sin 2 x+\frac{3}{2^{2}} e^{3 x} \cos 2 x+K
$$

and so

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\left[\frac{2^{2}}{13}\right]\left(\frac{1}{2} e^{3 x} \sin 2 x+\frac{3}{2^{2}} e^{3 x} \cos 2 x+K\right) \\
& =\frac{2}{13} e^{3 x} \sin 2 x+\frac{3}{13} e^{3 x} \cos 2 x+\left[\frac{K 2^{2}}{13}\right] \\
& =\frac{e^{3 x}}{13}(2 \sin 2 x+3 \cos 2 x)+\left[\frac{K 2^{2}}{13}\right] .
\end{aligned}
$$

Thus

$$
\int e^{3 x} \cos 2 x d x=\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)+C
$$

## Indefinite Integral: Way \# 2

For this way, for each integration by parts, we let the $d v$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=\cos 2 x & d v_{1}=e^{3 x} d x \\
d u_{1}=-2 \sin 2 x d x & v_{1}=\frac{1}{3} e^{3 x}
\end{array}
$$

So, by integration by parts

$$
\int e^{3 x} \cos 2 x d x=\frac{1}{3} e^{3 x} \cos 2 x-\frac{-2}{3} \int e^{3 x} \sin 2 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=\sin 2 x & d v_{2}=e^{3 x} d x \\
d u_{2}=2 \cos 2 x d x & v_{2}=\frac{1}{3} e^{3 x}
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3}\left[\frac{1}{3} e^{3 x} \sin 2 x-\frac{2}{3} \int e^{3 x} \cos 2 x d x\right] \\
& =\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x-\frac{2^{2}}{3^{2}} \int e^{3 x} \cos 2 x d x
\end{aligned}
$$

Now solving for $\int e^{3 x} \cos 2 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{2^{2}}{3^{2}}\right] \int e^{3 x} \cos 2 x d x=\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x+K
$$

and so

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\left[\frac{3^{2}}{3^{2}+2^{2}}\right]\left(\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x+K\right) \\
& =\frac{3}{13} e^{3 x} \cos 2 x+\frac{2}{13} e^{3 x} \sin 2 x+\left[\frac{K 3^{2}}{3^{2}+2^{2}}\right] \\
& =\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)+\left[\frac{K 3^{2}}{3^{2}+2^{2}}\right]
\end{aligned}
$$

Thus

$$
\int e^{3 x} \cos 2 x d x=\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)+C
$$

## Indefinite Integral: Doesn't Work Way

If you try two integration by part with letting the exponential function be with the $u$ one time and the $d v$ the other time, then when you use the bring to the other side idea, you will get $0=0$, which is true but not helpful.
12. Show all your work below the box then put answer in the box. Work in a correct logical fashion. Dervive a reduction formula for $\int x^{n} e^{x} d x$ where $n \in \mathbb{N}=\{1,2,3,4, \ldots\}$.

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x
$$

## Integration by Parts' Key Idea:

- For $\int x^{n} f(x) d x$ where $\int f(x) d x$ is easy, try $u=x^{n}$ and $d v=f(x) d x$.
(Note that then $v=\int d v=\int f(x) d x$.) This often reduces $x^{n}$ to $x^{n-1}$.

$$
\begin{array}{lr}
u=x^{n} & d v=e^{x} d x \\
d u=n x^{n-1} d x & v=e^{x}
\end{array}
$$

So Integration by Parts $\int u d v=u v-\int v d u$ gives us that $\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x$.

A student solution:


## STATEMENT OF MULTIPLE CHOICE PROBLEMS

These sheets of paper are not collected.
Thus you do not have to show your work.

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $\left.f(x)\right)$.
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then: $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate

$$
\int_{3}^{27} \frac{1}{2 x} d x
$$

You can use the Laws of Logs (see above Hint).
1soln.

$$
\int_{3}^{27} \frac{1}{2 x} d x=\frac{1}{2}\left[\int_{3}^{27} \frac{1}{x} d x\right]=\frac{1}{2}\left[\left.\ln |x|\right|_{3} ^{27}\right]=\frac{1}{2}[\ln 27-\ln 3]=\frac{1}{2}\left[\ln \frac{27}{3}\right]=\frac{1}{2}[\ln 9]=\ln \left(9^{1 / 2}\right)=\ln 3 .
$$

2. Find the polynomial $y=p(x)$ so that

$$
\int(p(x)) e^{x^{2}} d x=x e^{x^{2}}+C
$$

Recall that $e^{x^{2}}=e^{\left(x^{2}\right)}$. Also note that we cannot integrate the function $y=e^{x^{2}}$ with techniques we have learned thus far (in fact, $y=e^{x^{2}}$ does not have elementary antiderivative). Have you yet read the Hints at the top of page?
2soln. Since

$$
D_{x}\left(x e^{x^{2}}\right)=\left[D_{x} x\right] e^{x^{2}}+x\left[D_{x} e^{x^{2}}\right]=[1] \cdot e^{x^{2}}+x \cdot\left[2 x e^{x^{2}}\right]=\left(1+2 x^{2}\right) e^{x^{2}}
$$

by the Fundamental Theorem of Calculus,

$$
\int\left(2 x^{2}+1\right) e^{x^{2}} d x=x e^{x^{2}}+C
$$

- Problems 1 and 2 were meant to reiterate the importance of the above two Hints. Kept them in mind while doing the rest of the integration problems.

3. Evaluate the integral

$$
\int_{0}^{1} \frac{x}{x^{2}+9} d x
$$

3soln.

$$
\left.\begin{array}{l}
\int \frac{x}{x^{2}+9} d x=\frac{1}{2} \int \frac{2 x d x}{x^{2}+9}=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+c=\frac{1}{2} \ln \left|x^{2}+9\right|+c \\
u=x^{2}+9 \\
d u=2 x d x
\end{array}\right\}
$$

So

$$
\begin{aligned}
\int_{0}^{1} \frac{x}{x^{2}+9} d x & =\left.\frac{1}{2} \ln \left|x^{2}+9\right|\right|_{x=0} ^{x=1}=\frac{1}{2} \ln 10-\frac{1}{2} \ln 9 \\
& =\frac{1}{2}[\ln 10-\ln 9]=\frac{1}{2} \ln \left(\frac{10}{9}\right)
\end{aligned}
$$

4. Evaluate the integral

$$
\int_{0}^{4} \frac{x}{x+9} d x
$$

4soln.

$$
\begin{aligned}
& \int \frac{x}{x+9} d x=\int 1 d x-9 \int \frac{d x}{x+9}=x-9 \ln |x+9|+C \\
& \frac{x}{x+9}=\frac{x+9}{x+9}-\frac{9}{x+9}=1-\frac{9}{x+9} \\
& \begin{array}{l}
\text { Long } \\
\text { Division } \\
\text { (Fake) }
\end{array} \\
& =\frac{\text { Check }}{} \begin{array}{l}
D_{x}[x-9 \ln |x+9|]=1-\frac{9}{x+9} \\
=\frac{x+9}{x+9}-\frac{9}{x+9}=\frac{x}{x+9}
\end{array}
\end{aligned}
$$

So $\int_{0}^{4} \frac{x}{x+9} d x=\left.[x-9 \ln |x+9|]\right|_{x=0} ^{x=4}$

$$
\begin{aligned}
& =[4-9 \ln |: 3|]-[0-9 \ln |9|] \\
& =4-9 \ln (13)+9 \ln (9)
\end{aligned}
$$

5. Evaluate

$$
\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{4} x d x
$$

Answer:
5soln. Since

$$
\int \sin ^{3} x \cos ^{4} x d x=\int \cos ^{4} x\left(1-\cos ^{2} x\right) \sin x d x=\int \cos ^{4} x \sin x d x-\int \cos ^{6} x \sin x d x=-\frac{\cos ^{5} x}{5}+\frac{\cos ^{7} x}{7}+C
$$

we get

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{3} x \cos ^{4} x d x & =\left.\left(\frac{\cos ^{7} x}{7}-\frac{\cos ^{5} x}{5}\right)\right|_{0} ^{\pi / 2}=\left(\frac{\cos ^{7} \frac{\pi}{2}}{7}-\frac{\cos ^{5} \frac{\pi}{2}}{5}\right)-\left(\frac{\cos ^{7} 0}{7}-\frac{\cos ^{5} 0}{5}\right) \\
& =(0-0)-\left(\frac{1}{7}-\frac{1}{5}\right)=\frac{1}{5}-\frac{1}{7}=\frac{7-5}{35}=\frac{2}{35}
\end{aligned}
$$

6. Evaluate

$$
\int_{3}^{7} \frac{d x}{x^{2}-6 x+25}
$$

Hint. Complete the square: $x^{2}-6 x+25=(x \pm ?)^{2} \pm$ ? .
6soln. Complete the square:
$x^{2}-6 x+25=(x-3)^{2}+16=(x-3)^{2}+4^{2}=u^{2}+a^{2}$ where $u=x-3$ and $a=4$.
So use the substitution $u=a \tan \theta$ :

$$
x-3=4 \tan \theta \quad, \quad d x=4 \sec ^{2} \theta d \theta \quad, \quad \tan \theta=\frac{x-3}{4}
$$

and have

$$
x^{2}-6 x+25=(x-3)^{2}+4^{2}=4^{2} \tan ^{2} \theta+4^{2}=4^{2}\left(\tan ^{2} \theta+1\right)=4^{2} \sec ^{2} \theta
$$

So

$$
\int \frac{d x}{x^{2}-6 x+25}=\int \frac{4 \sec ^{2} \theta d \theta}{4^{2} \sec ^{2} \theta}=\frac{1}{4} \int d \theta=\frac{1}{4} \arctan \frac{x-3}{4}+C
$$

So

$$
\int_{3}^{7} \frac{d x}{x^{2}-6 x+25}=\left.\frac{1}{4} \arctan \frac{x-3}{4}\right|_{3} ^{7}=\frac{1}{4} \arctan 1-\frac{1}{4} \arctan 0=\frac{1}{4} \frac{\pi}{4}-0=\frac{\pi}{16}
$$

7. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{6}} d x
$$

Answer:
7soln. Indefinite integral: $\int x^{-6} d x=\frac{x^{-5}}{-5}+C$.
Note that he function $y=x^{-6}$ is undefined at $x=0$; therefore, $\int_{-1}^{1} x^{-6} d x$ is an improrper integral and we need to investigate the behaviour of $\int_{-1}^{0} x^{-6} d x$ and $\int_{0}^{1} x^{-6} d x$. Note

$$
\int_{0}^{1} x^{-6} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-6} d x=\left.\frac{-1}{5} \lim _{b \rightarrow 0^{+}} \frac{1}{x^{5}}\right|_{x=b} ^{x=1}=\frac{-1}{5} \lim _{b \rightarrow 0^{+}}\left[1-\frac{1}{b^{5}}\right] \stackrel{-\infty}{=}+\infty .
$$

Similiarly (or can just use symmetry)

$$
\int_{-1}^{0} x^{-6} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} x^{-6} d x=\left.\frac{-1}{5} \lim _{a \rightarrow 0^{-}} \frac{1}{x^{5}}\right|_{x=-1} ^{x=a}=\frac{-1}{5} \lim _{a \rightarrow 0^{-}}\left[\frac{1}{a^{5}}-\frac{1}{-1}\right] \stackrel{(\infty)}{=}+\infty .
$$

Thus

$$
\int_{-1}^{1} x^{-6} d x=\int_{-1}^{0} x^{-6} d x+\int_{0}^{1} x^{-6} d x=\stackrel{\text { see above }}{=} \infty \notinfty=\infty
$$

and so $\int_{-1}^{1} x^{-6} d x$ diverges to infinity.
8. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{5}} d x
$$

Answer:
8soln. Indefinite integral: $\int x^{-5} d x=\frac{x^{-4}}{-4}+C$.
Note that he function $y=x^{-5}$ is undefined at $x=0$; therefore, $\int_{-1}^{1} x^{-5} d x$ is an improrper integral and we need to investigate the behaviour of $\int_{-1}^{0} x^{-5} d x$ and $\int_{0}^{1} x^{-5} d x$. Note

$$
\left.\int_{0}^{1} x^{-5} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-5} d x=\left.\frac{-1}{4} \lim _{b \rightarrow 0^{+}} \frac{1}{x^{4}}\right|_{x=b} ^{x=1}=\frac{-1}{4} \lim _{b \rightarrow 0^{+}}\left[1-\frac{1}{b^{4}}\right]=\infty\right)
$$

Similiarly (also can do by symmetry)

$$
\int_{-1}^{0} x^{-5} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} x^{-5} d x=\left.\frac{-1}{4} \lim _{a \rightarrow 0^{-}} \frac{1}{x^{4}}\right|_{x=-1} ^{x=a}=\frac{-1}{4} \lim _{a \rightarrow 0^{-}}\left[\frac{1}{a^{4}}-\frac{1}{-1}\right] \stackrel{\infty}{=}-\infty .
$$

So $\int_{-1}^{1} x^{-5} d x$ does not exist but also does not diverge to infinity.

