| MARK BOX |  |  |
| :---: | :---: | :---: |
| PROBLEM | POINTS |  |
| $1-25$ | $4 \times 25$ |  |
| $\%$ | 100 |  |

## HAND IN PART

NAME: Solutions

PIN:
17

## INSTRUCTIONS

- This exam comes in two parts.
(1) HAND-IN PART. Hand-in only this part.
(2) NOT TO HAND-IN PART. This part will not be collected. Take this part home to learn from and to check your answers when the solutions are posted.
- For the Multiple Choice problems, circle your answer(s) on the provided chart. No need to show work.
- The mark box above indicates the problems (check that you have them all) along with their points.
- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, any device with which you can connect to the internet, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a student's request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7-8.8, 10.1-10.10 and 11.1-11.5 .


## Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.
$\qquad$

## MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table below your solution to the multiple choice problems.
- You may choice up to 2 answers for each multiple choice problem. The scoring is as follows.
* For a problem with precisely one answer marked and the answer is correct, 4 points.
* For a problem with precisely two answers marked, one of which is correct, 1 points.
* All other cases, 0 points.
- Fill in the "number of solutions circled" column.

| Table for Your Muliple Choice Solutions |  |  |  |  |  |  | Do Not Write Below |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRoblem |  |  |  |  |  | number of <br> solutions <br> circled | 1 | 2 | B | x |
| 1 | (1a) | 1 b | 1 c | 1 d | 1 e |  |  |  |  |  |
| 2 | (2a) | 2 b | 2 c | 2 d | 2 e |  |  |  |  |  |
| 3 | 3 a | 3b | (3c) | 3d | 3 e |  |  |  |  |  |
| 4 | 4 a | 4 b | 4 c | (4d) | 4 e |  |  |  |  |  |
| 5 | 5 a | (5b) | 5 c | 5 d | 5 e |  |  |  |  |  |
| 6 | 6 a | 6 b | 6 c | (6d) | 6 e |  |  |  |  |  |
| 7 | 7 a | (7b) | 7 c | 7d | 7 e |  |  |  |  |  |
| 8 | (8a) | 8 b | 8 c | 8d | 8 e |  |  |  |  |  |
| 9 | (9a) | 9 b | 9 c | 9d | 9 e |  |  |  |  |  |
| 10 | 10a | (10b) | 10c | 10d | 10e |  |  |  |  |  |
| 11 | 11a | 111 | 11c | 11d | 11e |  |  |  |  |  |
| 12 | 12a | (12b) | 12c | 12d | 12 e |  |  |  |  |  |
| 13 | (13a) | 13b | 13c | 13d | 13e |  |  |  |  |  |
| 14 | 14a | 14b | 14 c | (14d) | 14 e |  |  |  |  |  |
| 15 | 15a | 15b | (15c) | 15d | 15 e |  |  |  |  |  |
| 16 | 16a | (16b) | 16c | 16d | 16 e |  |  |  |  |  |
| 17 | (17a) | 17b | 17c | 17d | 17 e |  |  |  |  |  |
| 18 | 18a | 18b | (18c) | 18d | 18e |  |  |  |  |  |
| 19 | 19a | (19b) | 19c | 19d | 19e |  |  |  |  |  |
| 20 | 20a | (20b) | 20c | 20d | 20 e |  |  |  |  |  |
| 21 | 21a | 21 b | (21c) | 21d | 21 e |  |  |  |  |  |
| 22 | 22a | 22b | 22c | 22d | 22 e |  |  |  |  |  |
| 23 | 23a | 23b | 23c | 23d | 23 e |  |  |  |  |  |
| 24 | 24a | (24b) | 24 c | 24d | 24 e |  |  |  |  |  |
| 25 | (25a) | 25b | 25 c | 25d | 25 e |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | 4 | 1 | 0 | 0 |
|  |  |  |  |  |  |  |  |  |  |  |

## NOT TO HAND-IN PART <br> STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (ie. $F^{\prime}(x)$ should be $f(x)$ ).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then: $\ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate the integral

$$
\int_{0}^{1} \frac{x}{x^{2}+9} d x
$$

1soln.

$$
\begin{aligned}
& \int_{x=0}^{x=1} \frac{x}{x^{2}+9} d x=\frac{1}{2} \int_{u=9}^{u=10} \frac{d u}{u}=\left.\frac{1}{2} \ln |u|\right|_{u=9} ^{u=10} \\
&=\frac{1}{2} \ln 10-\frac{1}{2} \ln 9 \\
& \begin{array}{l}
u=x^{2}+9 \\
d u=2 x d x \\
x=0 \Rightarrow u=9 \\
x=1 \Rightarrow u=10
\end{array}
\end{aligned}
$$

2. Evaluate the integral

2soln.

$$
\int_{0}^{4} \frac{x}{x+9} d x . \quad \int_{0}^{4} \frac{x}{x+9} d x
$$

$$
\begin{aligned}
& \text { Do not have strictly bigger bottoms so mead to do long division. } \\
& \text { But it's easy to "fake" long division here. } \\
& \frac{x}{x+9}=\frac{x+9-9}{x+9}=\frac{x+9}{x+9}-\frac{9}{x+9}=1-\frac{9}{x+9} .
\end{aligned}
$$

So

$$
\int_{0}^{4} \frac{x}{x+9} d x=\int_{0}^{4}\left[1-\frac{9}{x+9}\right] d x
$$

$$
=\left.[x-9 \ln |x+9|] \quad\right|_{x=0} ^{x=4}
$$

$$
=(4-9 \ln 13)-(0-9 \ln 9)
$$

$$
=4-9 \ln 13+9 \ln 9
$$

3. Evaluate

$$
\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x
$$

3soln. Let $u=e^{x}$. So $d u=e^{x} d x$. So $\int e^{x} \cos \left(e^{x}\right) d x=\int \cos u d u=\sin u+C=\sin \left(e^{x}\right)+C$.
Next check indefinite integral: $D_{x} \sin \left(e^{x}\right)=\left[\cos \left(e^{x}\right)\right] D_{x} e^{x}=\left[\cos \left(e^{x}\right)\right] e^{x} \quad \checkmark$.
So $\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x=\left.\sin e^{x}\right|_{x=0} ^{x=\ln (2 \pi)}=\sin e^{\ln (2 \pi)}-\sin e^{0}=\sin (2 \pi)-\sin 1=0-\sin 1=-\sin 1$
4. Evaluate

$$
\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x
$$

4soln. Below we show that $\int e^{x} \cos x d x=\frac{e^{x}(\sin x+\cos x)}{2}+C$.
So $\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x=\left.\frac{e^{x}(\sin x+\cos x)}{2}\right|_{0} ^{3 \pi / 2}=\frac{e^{3 \pi / 2}(-1)}{2}-\frac{e^{0}(1)}{2}=\frac{-1-e^{3 \pi / 2}}{2}$.
To find the indefinite integral, use two integration by parts and the bring to the other side idea. For the two integration by parts, put the expontential function with either the $u$ 's both times or the $d v$ 's both times.

$$
\text { Way \# } 1
$$

For this way, for each integration by parts, we let the $u$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=e^{1 x} & d v_{1}=\cos 1 x d x \\
d u_{1}=1 e^{1 x} d x & v_{1}=\frac{1}{1} \sin 1 x
\end{array}
$$

So by integration by parts

$$
\int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1} \int e^{1 x} \sin 1 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=e^{1 x} & d v_{2}=\sin 1 x d x \\
d u_{2}=1 e^{1 x} d x & v_{2}=\frac{-1}{1} \cos 1 x
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1}\left[\frac{-1}{1} e^{1 x} \cos 1 x-\frac{-1}{1} \int e^{1 x} \cos 1 x d x\right] \\
& =\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x-\frac{1^{2}}{1^{2}} \int e^{1 x} \cos 1 x d x
\end{aligned}
$$

Now solving for $\int e^{1 x} \cos 1 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{1^{2}}{1^{2}}\right] \int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x+K
$$

and so

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\left[\frac{1^{2}}{2}\right]\left(\frac{1}{1} e^{1 x} \sin 1 x+\frac{1}{1^{2}} e^{1 x} \cos 1 x+K\right) \\
& =\frac{1}{2} e^{1 x} \sin 1 x+\frac{1}{2} e^{1 x} \cos 1 x+\left[\frac{K 1^{2}}{2}\right] \\
& =\frac{e^{1 x}}{2}(1 \sin 1 x+1 \cos 1 x)+\left[\frac{K 1^{2}}{2}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x= & \frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+C \\
& \text { Way \#2 }
\end{aligned}
$$

For this way, for each integration by parts, we let the $d v$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=\cos 1 x & d v_{1}=e^{1 x} d x \\
d u_{1}=-1 \sin 1 x d x & v_{1}=\frac{1}{1} e^{1 x}
\end{array}
$$

So, by integration by parts

$$
\int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \cos 1 x-\frac{-1}{1} \int e^{1 x} \sin 1 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=\sin 1 x & d v_{2}=e^{1 x} d x \\
d u_{2}=1 \cos 1 x d x & v_{2}=\frac{1}{1} e^{1 x}
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1}\left[\frac{1}{1} e^{1 x} \sin 1 x-\frac{1}{1} \int e^{1 x} \cos 1 x d x\right] \\
& =\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x-\frac{1^{2}}{1^{2}} \int e^{1 x} \cos 1 x d x
\end{aligned}
$$

Now solving for $\int e^{1 x} \cos 1 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{1^{2}}{1^{2}}\right] \int e^{1 x} \cos 1 x d x=\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x+K
$$

and so

$$
\begin{aligned}
\int e^{1 x} \cos 1 x d x & =\left[\frac{1^{2}}{1^{2}+1^{2}}\right]\left(\frac{1}{1} e^{1 x} \cos 1 x+\frac{1}{1^{2}} e^{1 x} \sin 1 x+K\right) \\
& =\frac{1}{2} e^{1 x} \cos 1 x+\frac{1}{2} e^{1 x} \sin 1 x+\left[\frac{K 1^{2}}{1^{2}+1^{2}}\right] \\
& =\frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+\left[\frac{K 1^{2}}{1^{2}+1^{2}}\right]
\end{aligned}
$$

Thus

$$
\int e^{1 x} \cos 1 x d x=\frac{e^{1 x}}{2}(1 \cos 1 x+1 \sin 1 x)+C
$$

## Doesn’t Work Way

If you try two integration by part with letting the exponential function be with the $u$ one time and the $d v$ the other time, then when you use the bring to the other side idea, you will get $0=0$, which is true but not helpful.
5. Evaluate

$$
\int_{x=0}^{x=1} x e^{x} a \quad \begin{array}{ll}
u=x & d v=e^{x} d x \\
& d u=d x
\end{array} \quad \text { gives }
$$

5soln.

$$
\begin{aligned}
\int x e^{x} d x & =\int u d v=u v-\int v d u=x e^{x}-\int e^{x} d x \\
& =x e^{x}-e^{x}+C \cdot=(x-1) e^{x}+c
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad=x e^{x}-e^{\prime}+C e^{x}\right]=\left[D_{x}(x-1)\right] e^{x}+(x-1)\left[D_{x} e^{x}\right]=1 e^{x}+(x-1) e^{x}=x e^{x} \\
& \text { - Check } D_{x}[(x-1)
\end{aligned}
$$

$$
\text { , } \int_{x=0}^{x=1} x e^{x} d x=\left.(x-1) e^{x}\right|_{x=0} ^{x=1}=\left[0-\left(-e^{0}\right)\right]=e^{0}=1 .
$$

## 6. Evaluate

$$
\int_{x=0}^{x=1} \sin ^{4} x d i \text {. From dis lecture handout on Trig Integrals } \frac{\text { Example 4. } \int \sin ^{4} x d x}{2014 د \cdots \cdots, \text { nan } p}
$$

6soln.

$$
\begin{aligned}
& \begin{array}{l}
\text { If we try } s=\cos x \text { or } t=\sin x \text {, it will not work (why? } \int \sin ^{4} x d x=-\int \sin ^{3} x \\
\text { Here we use the half-angle formulas. }
\end{array} \\
& \int \sin ^{4} x d x=\int\left[\sin ^{2} x\right]^{2} d x=\int\left[\frac{1-\cos (2 x)}{2}\right]^{2} d x=\frac{1}{4} \int\left[1-2 \cos (2 x)+\cos ^{2}(2 x) \mid d x\right. \\
& =\frac{1}{4} \int\left[1-2 \cos (2 x)+\frac{1+\cos (4 x)}{2}\right] d x \\
& =\frac{3}{8} \int d x-\frac{1}{4} \cdot \int \cos (2 x) 2 d x+\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \int \cos (4 x) 4 d x \\
& =\frac{3}{8} x-\frac{1}{4} \sin (2 x)+\frac{1}{32} \sin (4 x)+C \\
& \text { - Check: use half/double - angle formulas. } \\
& D_{x}\left[\frac{3}{8} x-\frac{1}{7} \sin (2 x)+\frac{1}{32} \sin (4 x)\right] \\
& =\frac{3}{8}-\frac{1}{2} \cos (2 x)+\frac{1}{8} \cos (4 x) \\
& =\left[\frac{1-\cos (2 x)}{2}\right]+\frac{1}{4}\left[\frac{1+\cos 2(2 x)}{2}\right]+-\frac{1}{4} \\
& =\sin ^{2}(x)+\frac{1}{4} \cos ^{2}(2 x)-\frac{1}{4}=\sin ^{2}(x)+\frac{1}{4}[\underbrace{\cos ^{2}(x)-\sin ^{2}(x)}_{1-\sin ^{2}(x)}]^{2}-\frac{1}{4} \\
& =\sin ^{2}(x)+\frac{1}{4}\left[1-2 \sin ^{2}(x)\right]^{2}-\frac{1}{4} \\
& =\sin ^{2}(x)+\frac{1}{4}\left[1-4 \sin ^{2}(x)+4 \sin ^{4}(x)\right]-\frac{1}{4} \\
& =\underbrace{\sin ^{2}(x)}+\frac{\frac{1}{4}}{=}-\sin ^{2}(x)+\sin ^{4}(x)-\frac{1}{4}=\sin ^{4}(x) \\
& \text { - } \int_{0}^{1} \sin ^{4} x d x=\left.\left[\frac{3 x}{8}-\frac{\sin (2 x)}{4}+\frac{\sin (4 x)}{32}\right]\right|_{x=0} ^{x=1}=\left[\frac{3}{8}-\frac{1}{4} \sin 2+\frac{1}{32} \sin ^{4}\right]-[0]
\end{aligned}
$$

## 7. Evaluate

$$
\int_{x=5}^{x=10} \frac{\sqrt{x^{2}-25}}{x} d x
$$

AND specify the initial substitution.

## 7soln.

First, Evaluate $\int \frac{\sqrt{x^{2}-25}}{x} d x$, assuming that $x \geq 5$.

Solution. The integrand involves a radical of the form $\sqrt{x^{2}-a^{2}}$ with $a=5$, so from Table 8.4.1 we make the substitution

$$
\begin{aligned}
& x=5 \sec \theta, \quad 0 \leq \theta<\pi / 2 \\
& \frac{d x}{d \theta}=5 \sec \theta \tan \theta \quad \text { or } \quad d x=5 \sec \theta \tan \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
\int \frac{\sqrt{x^{2}-25}}{x} d x & =\int \frac{\sqrt{25 \sec ^{2} \theta-25}}{5 \sec \theta}(5 \sec \theta \tan \theta) d \theta \\
& =\int \frac{5|\tan \theta|}{5 \sec \theta}(5 \sec \theta \tan \theta) d \theta \\
& =5 \int \tan ^{2} \theta d \theta \quad \text { ann } \theta \geq 0 \sin x \| \leq \pi<\pi / 2 \\
& =5 \int\left(\sec ^{2} \theta-1\right) d \theta=5 \tan \theta-5 \theta+C
\end{aligned}
$$



$$
\begin{aligned}
& \text { - Check } D_{x}\left[\left(x^{2}-25\right)^{1 / 2}-5 \sec ^{-1}\left(\frac{x}{5}\right)\right] \\
& =\frac{1}{2}\left(x^{2}-25\right)^{-1 / 2}(2 x)-5 \frac{1}{\left|\frac{x}{5}\right| \sqrt{\left(\frac{x}{5}\right)^{2}-1}} \cdot \frac{1}{5}
\end{aligned}
$$

$$
=\frac{x}{\left(x^{2}-25\right)^{1 / 2}}-\frac{1}{\frac{x}{5} \sqrt{\frac{x^{2}}{25}-\frac{25}{25}}} \quad \text { (know } x \geqslant 5 \text { ) }
$$

$$
=\frac{x}{\left(x^{2}-25\right)^{1 / 2}}-\frac{25}{x\left(x^{2}-25\right)^{1 / 2}}=\frac{\left(x^{2}-25\right)}{x\left(x^{2}-25\right)^{1 / 2}} \cdot \frac{\left(x^{2}-25\right)^{1 / 2}}{\left(x^{2}-25\right)^{1 / 2}}
$$

$$
=\frac{\left(x^{2}-25\right)\left(x^{2}-25\right)^{1 / 2}}{x\left(x^{2}-25\right)}=\frac{\sqrt{x^{2}-25}}{x} \cdot 1
$$

$$
\cdot \int_{5}^{10} \frac{\sqrt{x^{2}-25}}{x} d x=\sqrt{x^{2}-25}-\left.5 \sec ^{-1}\left(\frac{x}{5}\right)\right|_{0} ^{x=10} x
$$

$$
=\left[\frac{x}{\left.\sqrt{100-25}-5 \sec ^{-1} 2\right]-\left[0-5 \sec ^{-1} 1\right]=}\right.
$$

$$
=\sqrt{75}-5 \cdot \frac{\pi}{3}=5 \sqrt{3}-5\left(\frac{\pi}{3}\right)=5\left(\sqrt{3}-\frac{\pi}{3}\right)
$$

## 8. Evaluate

$$
\int_{x=1}^{x=3} \frac{5 x^{2}+3 x-2}{x^{3}+9 r^{2}} d x
$$

8soln.

$$
\begin{aligned}
& \text { - } \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}}=\frac{5 x^{2}+3 x-2}{x^{2}(x+2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+2} \text {. Multiply by } x^{2}(x+2) \text { to } \\
& \text { get } 5 x^{2}+3 x-2=A x(x+2)+B(x+2)+C x^{2} . \text { Set } x=-2 \text { to get } C=3 \text {, and take } \\
& x=0 \text { to get } B=-1 \text {. Equating the coefficients of } x^{2} \text { gives } 5=A+C \Rightarrow A=2 \text {. So } \\
& \int \frac{5 x^{2}+3 x-2}{x^{2}+2 x^{2}} d x=\int\left(\frac{2}{x}-\frac{1}{x^{2}}+\frac{3}{x+2}\right) d x=2 \ln |x|+\frac{1}{x}+3 \ln |x+2|+C . \\
& \text { - Checte } D_{x}\left[2 \ln |x|+x^{-1}+3 \ln |x+2|\right]=\frac{2}{x}+-1 x^{-2}+\frac{3}{x+2} \\
& =\frac{2}{x}-\frac{1}{x^{2}}+\frac{3}{x+2}=\frac{2 x(x+2)-(x+2)+3 x^{2}}{x^{2}(x+2)}=\frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} \\
& \text { - }\left.\left[3 \ln |x+2|+2 \ln x+\frac{1}{x}\right]\right|_{x=1} ^{x=3}= \\
& {\left[3 \ln 5+2 \ln 3+\frac{1}{3}\right]-[3 \ln 3+\underbrace{2 \ln 1}_{=0}+1]=} \\
& 3 \ln 5-\ln 3-\frac{2}{3} .
\end{aligned}
$$

9. For which value of $p$ does

$$
\begin{aligned}
& \int_{0}^{1} \frac{1}{x^{p}} d x=1.25 ? \\
& \int_{0}^{1} \frac{1}{x^{p}} d x=\left.\int_{0}^{1} x^{-p} d x \quad \frac{p \neq 1}{=} \frac{x^{-p+1}}{-p+1}\right|_{x=0} ^{x=1} \\
& =\frac{1}{1-p}-0=\frac{1}{1-p} . \\
& \text { Want } \quad \frac{1}{1-p}=1.25 \\
& \frac{1}{1-p}=1 \frac{1}{4} \\
& \frac{1}{1-p}=\frac{5}{4} \\
& 1-p=\frac{4}{5} \\
& \frac{4}{5}=1-p \\
& p=1-\frac{4}{5}=\frac{1}{5}=\frac{2}{10}=0.2
\end{aligned}
$$

9soln.
10. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{2 / 3}} d x
$$

10soln. $\int_{x=-1}^{x=1} \frac{1}{x^{2 / 3}} d x=\lim _{a \rightarrow 0^{-}} \int_{x=-1}^{x=a} \frac{1}{x^{2 / 3}} d x+\lim _{b \rightarrow 0^{+}} \int_{x=b}^{x=1} \frac{1}{x^{2 / 3}} d x \stackrel{\text { see below }}{=} 3+3=6$.
Note that $\int_{0}^{1} x^{\frac{-2}{3}} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-\frac{2}{3}} d x=\left.\lim _{b \rightarrow 0^{+}} 3 x^{\frac{1}{3}}\right|_{b} ^{1}=\lim _{b \rightarrow 0^{+}}\left(3-3 b^{\frac{1}{3}}\right)=3$.
Similiarly (also by symmetry) $\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} x^{\frac{-2}{3}} d x=3$.
11. Compute
$\lim _{n \rightarrow \infty} \frac{}{19 n^{5}} 17 n^{3}+4 n^{2}-5$

## 11soln.

divide through by $n^{\text {(to the highest power ) }}=n^{5}$
$\lim _{n \rightarrow \infty} \frac{17 n^{3}+4 n^{2}-5}{19 n^{5}+3 n^{4}-8 n^{3}+n^{2}-8}$
$=\lim _{n \rightarrow \infty} \frac{\frac{17}{n^{2}}+\frac{4}{n^{3}}-\frac{5}{n^{5}}}{19+\frac{3}{n}-\frac{8}{n^{2}}+\frac{1}{n^{3}}-\frac{8}{n^{5}}}$

$$
=\frac{0+0+0}{19+0-0+0-0}=\frac{0}{19}=0 .
$$

12. Compute

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{9 n^{4}+1}}{17 n^{2}+n+3}
$$

## 12soln.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sqrt{9 n^{4}+1}}{17 n^{2}+n+3} \\
&= \lim _{n \rightarrow \infty} \frac{\frac{\sqrt{9 n^{4}+1}}{\sqrt{n^{4}}}}{\frac{17 n^{2}+n+3}{n^{2}}} \\
&= \lim _{n \rightarrow \infty} \\
& \frac{\sqrt{9+\frac{1}{n^{4}}}}{17+\frac{1}{n}+\frac{3}{n^{2}}} \\
&= \frac{\sqrt{9}}{17} \\
&= \frac{3}{17}
\end{aligned}
$$

13. Compute

$$
\lim _{n \rightarrow \infty}\left(\frac{-1}{2}\right)^{n} . \quad \lim _{n \rightarrow \infty}\left(-\frac{1}{2}\right)^{n}=0
$$

## 13soln.

$$
\begin{aligned}
& \text { Heometric Series } \\
& r=-\frac{1}{2} \\
& |r|=\left|-\frac{1}{2}\right|<1 \\
& \text { so converges to zero }
\end{aligned}
$$

14. Consider the following two series.

Series A is $\quad \sum_{n=1}^{\infty} \frac{1}{n}$
Series B is $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.

## 14 sorn.

$$
\sum \frac{1}{n} \text { divgeres } \quad\left(\begin{array}{ll}
\text { harmonic series }=o r= \\
p \text {-series } & p=1 \leq 1
\end{array}\right)
$$

Now consider

$$
\sum \frac{(-1)^{n}}{n}
$$

$$
\text { Let } u_{n}=\frac{1}{n} \text {. }
$$

- $u_{n}$ is decreasing
- $\lim _{n \rightarrow \infty} u_{n}=0$

So by AST, $\sum \frac{(-1)^{n}}{n} \operatorname{con} v$.
$=$
So $\sum \frac{1}{n}$ ding and $\sum \frac{(-1)^{n}}{n}$ cont Lond.
15. The series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
$$

## 15soln.

$$
\begin{gathered}
\square \text { abeohele conacergente LCT ant } b_{n}=\frac{1}{n} \\
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}} \quad \square \text { conditionally convergent then wee AST } \\
\square \text { divergent }
\end{gathered}
$$

Warning: there is a square root in the denominator ... many of you overlooked $\sqrt{ }$ 's on Exams ... see it?
Abs. Cord? Comelier $\sum\left|(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}\right|=\sum \frac{1}{\sqrt{(n+2)(n+7)}}$
$\frac{\text { Thanking Land }}{a_{n}=\sqrt{(n+2)(n+7)}} \quad n$ big $\frac{1}{\sqrt{n \cdot n}}=\frac{1}{n}=b_{n}$
LOT $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{(n+2)(n+7)}}=1$
$\stackrel{\text { more details }}{\longrightarrow} \lim _{n \rightarrow-\infty} \sqrt{\left[\frac{n^{2}}{(n+2)(n+7)}\right]}=\sqrt{1}=1_{0}^{\infty}$
so $\sum b_{n} \& \sum a_{n}$ do the same thing. $\sum b_{n}$ divg (harmome urres)
$x_{0} \sum\left|(-1)^{n} \frac{1}{\sqrt{n+2)(n+7)}}\right|$ avg oo ont abs, con.
Cond. Cow? Li' . use AST wT $0 \leq u_{n}=\frac{1}{\sqrt{(n+2)(n+7)}}$
(1) $u_{n}$ dec, ic $u_{n}>u_{n+1}$ ? yea clear.
(2) $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{(n+2)(n+7)}}=0$ (3) $\left\{\begin{array}{l}\text { 4., by AST, } \\ \sum(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}\end{array}\right.$ con :
16. Consider the formal seris $\sum_{n=1}^{\infty} a_{n}$ where

$$
a_{n}=(-1)^{n} \frac{(n+1)!}{(2 n)!}
$$

and let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

## 16soln.



$$
\underline{\text { Abs. Conn? Consider } \sum \frac{(n+1)!}{(2 n)!} \quad \text { i use Ratio lest }}
$$

$$
l=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \stackrel{\text { above }}{=} \lim _{n \rightarrow \infty} \frac{n+2}{(2 n+1)(2 n+2)}=0 \perp
$$

$$
V \text { Ratio Test }
$$

con.

$$
\begin{aligned}
& \text { But before you get started.... let } \\
& \text { Then } a_{n+1}=\frac{((n+1)+1)!}{(2(n+1))!}=\frac{(n+2)!}{(2 n+2)!} \\
& \begin{array}{l}
\text { Next, simplify } \frac{a_{n+1}}{n_{n}} \text { so that it has NO factorial sign (that is a sign) in it. } \\
\begin{array}{l}
\frac{n+2}{a_{\infty}}=\frac{n}{(2 n+1)(2 n+2)} \text { or } \frac{n+2}{4 n^{2}+6 n+2} \\
\text { Ok, now you should be ready to finish off the problem and check the correct bax above. }
\end{array}
\end{array} \\
& \frac{a_{n+1}}{a_{n}}=\frac{(n+2)!}{(2 n+2)!} \cdot \frac{(2 n)!}{(n+1)!}=\frac{(n+2)!}{(n+1)!} \cdot \frac{(2 n)!}{(2 n+2)!}=\frac{(n+1)!(n+2)}{(n+1)!} \cdot \frac{(2 n)!}{(2 n)!(2 n+1)(2 n+2)}
\end{aligned}
$$

17. Find the sum of the series

$$
\sum_{n=10}^{\infty} \frac{3^{n+1}}{4^{n}}
$$

## 17soln.

$$
\begin{aligned}
& \sum_{n=10}^{\infty} \frac{3^{n+1}}{4^{n}}=\sum_{n=10}^{\infty} 3 \cdot\left(\frac{3}{4}\right)^{n} \\
& \text { Let } S_{N}=\sum_{n=10}^{N} 3 \cdot\left(\frac{3}{4}\right)^{n} \cdot \\
& 1 \quad S_{N}=3\left[\left(\frac{3}{4}\right)^{10}+\left(\frac{3}{4}\right)^{11}+\cdots+\left(\frac{3}{4}\right)^{N}\right] \\
& \frac{3}{4} S_{N}=3\left[\left(\frac{3}{4}\right)^{11}+\cdots+\left(\frac{3}{4}\right)^{N}+\left(\frac{3}{4}\right)^{N+1}\right] \\
& \left(1-\frac{3}{4}\right) S_{N}=3\left[\left(\frac{3}{4}\right)^{10+1}\right] \\
& \frac{1}{4} S_{N}=3\left[\left(\frac{3}{4}\right)^{10}-\left(\frac{3}{4}\right)^{N+1}\right] \\
& S_{N}=12\left[\left(\frac{3}{4}\right)^{10}-\left(\frac{3}{4}\right)^{N+1}\right] \\
& \lim _{N \rightarrow \infty} S_{N}=12 .\left(\frac{3}{4}\right)^{10}
\end{aligned}
$$

18. What is the LARGEST interval for which the power series
$\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}$
is absolutely convergent?
18 soln.

| Consider the formal power setien $\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}$ <br> Hint: $(2 x+6)^{n}=\|2(x+3)\|^{n}=2^{n}(x+3)^{n}=2^{n}(x-(-3))^{6}$ <br> The center is $x_{0}=$ $\qquad$ and the radius of convergence is $R=$ $\qquad$ 2 As we did in claws, make a number line indicating where the power seties is: atsolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any. |
| :---: |
| Ratio Teat $\rho=\lim _{n \rightarrow \infty},\left\|\frac{(2 x+6)^{n+1}}{4^{n+1}} \frac{4^{n}}{(2 x+6)^{n}}\right\|=\lim _{n \rightarrow \infty} \frac{\|2 x+6\|}{4}=\frac{\|2 x+6\|}{4}$ <br> Reot Test. $\rho=\lim _{n \rightarrow \infty}\left\|\frac{2 x+6)^{n}}{4 n}\right\|^{1 / n}=\operatorname{lin}_{n \rightarrow \infty} \frac{\|2 x+6\|}{4}=\frac{\|2 x+6\|}{4}$ |
| $p<1 \Leftrightarrow\|2 x+6\|<4 \Leftrightarrow 2\|x+3\|<4 \Leftrightarrow\|x+3\|<2 \Leftrightarrow\|x--3\|<2$ |
| endpts $-3+2=-1$ and $-3-2=-5$ |
| Clech endits $\begin{aligned} & \text { leck endpts } x=-1: \sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}} \end{aligned}=\sum_{n=1}^{\infty} \frac{4^{n}}{4^{n}}=\sum_{n=1}^{\infty} 1=1+1+1+1+\ldots=\infty \text { avg } \quad \begin{aligned} x=-5 \sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}} & =\sum_{n=1}^{\infty} \frac{(-4)^{n}}{4^{n}}=\sum_{n=1}^{\infty} \frac{(-1 \cdot 4)^{n}}{4 n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 4^{n}}{4^{n}} \\ & =\sum_{i=1}^{\infty}(-1)^{n}=-1+1-1+1-1+1-1+\cdots \end{aligned}$ <br> ose b+w $-1 \leqslant 0 \Rightarrow d V g$ |

19. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$ ?
19soln.

$$
\begin{gathered}
\sum c_{n} x^{2 n}=\sum c_{n}\left(x^{2}\right)^{n} \quad \text { converges when: } \\
\left|x^{2}\right|<16 \\
|x|^{2}<16 \\
|x|<4
\end{gathered}
$$

20. In class we learned that, for each $x \in \mathbb{R}$,

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Use this to find a Taylor expansion for

$$
f(x)=x \cos (4 x)
$$

center about $x_{0}=0$ (so, Maclaurin series).
20soln.

$$
\begin{aligned}
& \text { Since } \cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \text { then } \\
& \cos (4 x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{4^{2 n} x^{2 n}}{(2 n)!} \cdot \\
&=\cdot F(x)=x \cos (4 x)=x \sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!} \\
&=-\frac{\sum_{n=0}^{\infty}}{(-1)^{n} 44^{2 n} x^{2 n+1}} \\
&=\frac{(2 n)!}{n=0}
\end{aligned}
$$

21. In Polar Coordinates, a point $(r, \theta)$ also has which of the following representations? 21soln.

22. Find a parametrization for the line segment from $(-1,2)$ to $(10,-6)$ for $0 \leq t \leq 1$.

22soln. ans: $x=-1+11 t$ and $y=2-8 t$

$$
\begin{aligned}
& x(t)=-1+(10-(-1)) t=-1+11 t \\
& y(t)=2+(-6-2) t \quad=2-8 t
\end{aligned}
$$

23. Find an equation of the tangent line to the curve at the point corresponding to $t=11 \pi$.

$$
\begin{aligned}
& x=t \sin t \\
& y=t \cos t
\end{aligned}
$$

23soln. ans: $y=\frac{x}{11 \pi}-11 \pi$

$$
(x(11 \pi), \stackrel{11 \pi}{y}(11 \pi))=(0,-11 \pi)
$$

$$
\left.\frac{d y}{d x}\right|_{t=11 \pi}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right|_{t=11 \pi}=\left.\frac{\cos t-t \sin t}{\sin t+t \cos t}\right|_{t=11 \pi}=\frac{-1-0}{0-11 \pi}=\frac{1}{11 \pi}
$$

So equation of tangent line to curve when $t=11 \pi$ is

$$
\begin{aligned}
\left(y-{ }^{-} 11 \pi\right) & =\frac{1}{11 \pi}(x-0) \\
y+11 \pi & =\frac{1}{11 \pi} x \\
y & =\frac{1}{11 \pi} x-11 \pi
\end{aligned}
$$

24. Express the polar equation

$$
r=2 \sin \theta
$$

in Cartesion equations.

## 24soln.

$$
\begin{aligned}
r=2 \sin \theta & \Leftrightarrow r^{2}=2 r \sin \theta \\
& \Leftrightarrow x^{2}+y^{2}=2 y \leftarrow x^{2} \text {, but can you do better? What is it? } \\
& \Leftrightarrow x^{2}+y^{2}-2 y+1=1 \\
& \Leftrightarrow x^{2}+(y-1)^{2}=1 \& \text { circle with }\left\{\begin{array}{l}
\text { radium }=1 \\
\text { center }=(0,1)
\end{array}\right.
\end{aligned}
$$

25. Express the area enclosed by

$$
r=5-5 \sin \theta
$$

as on integral.

## 25soln.

$$
A=\frac{1}{2} \int_{\alpha}^{\beta}[f(0)]^{2} d \theta
$$

There are many answers (due to symmetry)

$$
A=\frac{1}{2} \int_{0}^{2 \pi}[5-5 \sin \theta]^{2} d \theta
$$

$$
\stackrel{\text { or }}{=} 2 \cdot \frac{1}{2} \int_{-\pi / 2}^{\pi / 2}[5-5 \sin \theta]^{2} d \theta
$$

$$
\text { or } 2 \cdot \frac{1}{2} \int_{0}^{-\pi / 2}[5-5 \sin \theta]^{2} d \theta+2 \frac{1}{2} \int_{\frac{3 \pi}{2}}^{2 \pi}[5-5 \sin \theta]^{2} d \theta
$$

$$
2 \cdot \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi}[5-5 \sin \theta]^{2} d \theta+2 \cdot \frac{1}{2} \int_{\pi}^{\frac{3 \pi}{2}}[5-5 \sin \theta]^{2} d \theta
$$

$$
\stackrel{\text { or }}{=2 \cdot \frac{1}{2} \int_{\pi / 2}^{3 \pi / 2}[5-5 \sin \theta]^{2} \text { do i.. gooch, we could. }} \begin{gathered}
\text { go or } 4 \text { or.. }
\end{gathered}
$$

$$
\text { FYI: } \begin{gathered}
{[5-5 \sin \theta]^{2}=25-50 \sin ^{1} \theta+25 \sin ^{2} \theta=25\left[\sin ^{2} \theta-2 \sin \theta+1\right]} \\
L=25(1-\sin \theta)^{2}
\end{gathered}
$$

