MARK BOX		
PROBLEM	POINTS	
$1-25$	4×25	
$\%$	100	

HAND IN PART

NAME: \qquad

PIN: \qquad

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND-IN PART. Hand-in only this part.
(2) NOT TO HAND-IN PART. This part will not be collected. Take this part home to learn from and to check your answers when the solutions are posted.
- For the Multiple Choice problems, circle your answer(s) on the provided chart. No need to show work.
- The mark box above indicates the problems (check that you have them all) along with their points.
- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, any device with which you can connect to the internet, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a student's request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7-8.8, 10.1-10.10 and 11.1-11.5 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.
\qquad

MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table below your solution to the multiple choice problems.
- You may choice up to 2 answers for each multiple choice problem. The scoring is as follows.
* For a problem with precisely one answer marked and the answer is correct, 4 points.
* For a problem with precisely two answers marked, one of which is correct, 1 points.
* All other cases, 0 points.
- Fill in the "number of solutions circled" column.

Table for Your Muliple Choice Solutions							Do Not Write Below			
Problem						$\|$number of solutions circled	1	2	B	x
1	1a	1b	1 c	1d	1 e					
2	2 a	2b	2c	2d	2 e					
3	3 a	3b	3c	3d	3 e					
4	4a	4b	4 c	4d	4 e					
5	5 a	5b	5 c	5 d	5 e					
6	6a	6 b	6 c	6 d	6 e					
7	7 a	7 b	7c	7 d	7 e					
8	8 a	8b	8 c	8 d	8 e					
9	9a	9b	9 c	9d	9 e					
10	10a	10b	10c	10d	10e					
11	11a	11b	11c	11d	11e					
12	12a	12b	12c	12d	12e					
13	13a	13b	13c	13d	13e					
14	14a	14b	14c	14d	14 e					
15	15 a	15b	15c	15d	15 e					
16	16a	16b	16c	16d	16e					
17	17a	17 b	17c	17d	17 e					
18	18a	18b	18c	18d	18e					
19	19a	19b	19c	19d	19e					
20	20a	20b	20c	20d	20e					
21	21a	21b	21c	21d	21 e					
22	22a	22 b	22c	22d	22 e					
23	23a	23b	23c	23d	23 e					
24	24a	24b	24 c	24d	24 e					
25	25a	25b	25 c	25d	25 e					
							4	1	0	0

NOT TO HAND-IN PART
 STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then: $\ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate the integral
$\int_{0}^{1} \frac{x}{x^{2}+9} d x$.
a. $\frac{1}{2}(\ln 10-\ln 9)$
b. $\frac{1}{2}(\ln 1-\ln 0)$
c. $(\ln 10-\ln 9)$
d. $(\ln 1-\ln 0)$
e. None of the others.
2. Evaluate the integral
$\int_{0}^{4} \frac{x}{x+9} d x$.
a. $4-9 \ln (13)+9 \ln (9)$
b. $13-9 \ln (4)+\ln (3)$
c. $(1 /(9 \ln (13))-\ln (3)$
d. $4-13 \ln (9)+3 \ln (18)$
e. None of the others.
3. Evaluate
$\int_{0}^{\ln (2 \pi)} e^{x} \cos \left(e^{x}\right) d x$
a. $e^{2 \pi}$
b. $e^{2 \pi}-1$
c. $-\sin (1)$
d. $\sin (1)$
e. None of the others.
4. Evaluate

$$
\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x
$$

a. $\frac{1+e^{3 \pi / 2}}{2}$
b. $\frac{1-e^{3 \pi / 2}}{2}$
c. $\frac{-1+e^{3 \pi / 2}}{2}$
d. $\frac{-1-e^{3 \pi / 2}}{2}$
e. None of the others.
5. Evaluate

$$
\int_{x=0}^{x=1} x e^{x} d x
$$

a. 0
b. 1
c. e
d. $2 e-1$
e. None of the others.
6. Evaluate

$$
\int_{x=0}^{x=1} \sin ^{4} x d x
$$

a. 1
b. π
c. $1+\sin 2+\sin 4$
d. $\frac{3}{8}-\frac{1}{4} \sin 2+\frac{1}{32} \sin 4$
e. None of the others.
7. Evaluate

$$
\int_{x=5}^{x=10} \frac{\sqrt{x^{2}-25}}{x} d x
$$

AND specify the initial substitution.
a. $\left(\sqrt{3}-\frac{\pi}{3}\right)$ using the initial substitute $x=5 \sec \theta$.
b. $5\left(\sqrt{3}-\frac{\pi}{3}\right)$ using the initial substitute $x=5 \sec \theta$
c. $\left(\sqrt{3}-\frac{\pi}{3}\right)$ using the initial substitute $x=5 \sin \theta$.
d. $5\left(\sqrt{3}-\frac{\pi}{3}\right)$ using the initial substitute $x=5 \sin \theta$
e. None of the others.
8. Evaluate
$\int_{x=1}^{x=3} \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} d x$.
a. $3 \ln 5-\ln 3-\frac{2}{3}$
b. $3 \ln 5-\ln 3-\frac{8}{3}$
c. $\ln 5-\frac{2}{3}$
d. $\frac{2}{3}-\ln 5$
e. None of the others.
9. For which value of p does

$$
\int_{0}^{1} \frac{1}{x^{p}} d x=1.25 ?
$$

a. $p=0.2$
b. $p=0.5$
c. $p=2.0$
d. $p=2.5$
e. None of the others.
10. Evaluate

$$
\int_{x=-1}^{x=1} \frac{1}{x^{2 / 3}} d x
$$

a. 0
b. 6
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
11. Compute
$\lim _{n \rightarrow \infty} \frac{17 n^{3}+4 n^{2}-5}{19 n^{5}+3 n^{4}-8 n^{3}+n^{2}-8}$.
a. $\frac{17}{19}$
b. 0
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
12. Compute
$\lim _{n \rightarrow \infty} \frac{\sqrt{9 n^{4}+1}}{17 n^{2}+n+3}$.
a. $\frac{9}{17}$
b. $\frac{3}{17}$
c. 0
d. diverges
e. None of the others.
13. Compute
$\lim _{n \rightarrow \infty}\left(\frac{-1}{2}\right)^{n}$.
a. 0
b. 1
c. diverges to infinity
d. does not exist but does not diverges to infinity
e. None of the others.
14. Consider the following two series.

Series A is $\quad \sum_{n=1}^{\infty} \frac{1}{n}$
Series B is $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
a. both series converge absolutely
b. both series diverge
c. series A converges conditionally and series B diverges
d. series A diverges and series B converges conditionally
e. None of the others.
15. The series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
$$

a. is absolutely convergent, as can be shown by the limit comparison test (LCT) with $b_{n}=\frac{1}{n^{2}}$
b. is conditionally convergent as can by shown by using only the AST and not other tests.
c. converges conditionally as can be shown by using the LCT with $b_{n}=\frac{1}{n}$ as well as the AST.
d. diverges
e. None of the others.
16. Consider the formal seris $\sum_{n=1}^{\infty} a_{n}$ where

$$
a_{n}=(-1)^{n} \frac{(n+1)!}{(2 n)!}
$$

and let
$\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$.
a. $\quad \sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=\frac{1}{2}$.
b. $\quad \sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=0$.
c. $\rho=1$ so the Ratio Test fails for $\sum_{n=1}^{\infty} a_{n}$
d. $\sum_{n=1}^{\infty} a_{n}$ diverges
e. None of the others.
17. Find the sum of the series

$$
\sum_{n=10}^{\infty} \frac{3^{n+1}}{4^{n}}
$$

a. $12\left(\frac{3}{4}\right)^{10}$
b. $4\left(\frac{3}{4}\right)^{10}$
c. $12\left(\frac{3}{4}\right)^{11}$
d. $4\left(\frac{3}{4}\right)^{11}$
e. None of the others.
18. What is the LARGEST interval for which the power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}
$$

is absolutely convergent?
a. $(1,5)$
b. $(-4,-2)$
c. $(-5,-1)$
d. $[-5,-1]$
e. None of the others.
19. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$?
a. 256
b. 4
c. 1
d. 16
e. None of the others.
20. In class we learned that, for each $x \in \mathbb{R}$,

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Use this to find a Taylor expansion for

$$
f(x)=x \cos (4 x)
$$

center about $x_{0}=0$ (so, Maclaurin series).
a. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{n!}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
c. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}$
d. $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2 n} x^{2 n+1}}{(2 n)!}$
e. None of the others.
21. In Polar Coordinates, a point (r, θ) also has which of the following representations?
a. $(r, \theta+\pi)$
b. $(-r, \theta)$
c. $(-r, \theta+\pi)$
d. It has no other representation.
e. None of the others.
22. Find a parameterization for the line segment from $(-1,2)$ to $(10,-6)$ for $0 \leq t \leq 1$.
a. $x=10-8 t$ and $y=-1+t$
b. $\quad x=-1+11 t$ and $y=2-8 t$
c. $x=-1+11 t$ and $y=-6-8 t$
d. $x=-1-11 t$ and $y=-8 t$
e. None of the others.
23. Find an equation of the tangent line to the curve at the point corresponding to $t=11 \pi$.

$$
\begin{aligned}
& x=t \sin t \\
& y=t \cos t .
\end{aligned}
$$

a. $y=\frac{x}{11 \pi}+12 \pi$
b. $y=\frac{x}{11 \pi}-11 \pi$
c. $y=\frac{x}{11 \pi}+11 \pi$
d. $y=\frac{x}{11 \pi}-12 \pi$
e. None of the others.
24. Express the polar equation

$$
r=2 \sin \theta
$$

in Cartesion equations.
a. $x^{2}+(y-2)^{2}=2$
b. $x^{2}+(y-1)^{2}=1$
c. $(x-1)^{2}+y^{2}=1$
d. $(x-2)^{2}+y^{2}=2$
e. None of the others.
25. Express the area enclosed by

$$
r=5-5 \sin \theta
$$

as on integral.
a. $\frac{1}{2} \int_{0}^{2 \pi}[5-5 \sin \theta]^{2} d \theta$
b. $\int_{0}^{2 \pi}[5-5 \sin \theta]^{2} d \theta$
c. $\frac{1}{2} \int_{0}^{2 \pi}[5-5 \sin \theta] d \theta$
d. $\frac{1}{2} \int_{0}^{2 \pi}\left[5^{2}-5^{2} \sin ^{2} \theta\right] d \theta$
e. None of the others.

