MARK BOX		
PROBLEM	POINTS	
$1-25$	4×25	
$\%$	100	

HAND IN PART

NAME: Solutions

PIN:
17

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND-IN PART. Hand-in only this part.
(2) NOT TO HAND-IN PART. This part will not be collected.

Take this part home to learn from and to check your answers when the solutions are posted.

- For the Multiple Choice problems, circle your answer(s) on the provided chart. No need to show work.
- The mark box above indicates the problems (check that you have them all) along with their points.
- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, any device with which you can connect to the internet, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a student's request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §8.1-8.5, 8.7, 8.8, 10.1-10.10, 11.1-11.5 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

Signature :

MULTIPLE CHOICE PROBLEMS

- Indicate (by circling) directly in the table below your solution to the multiple choice problems.
- You may choice up to 2 answers for each multiple choice problem. The scoring is as follows.
* For a problem with precisely one answer marked and the answer is correct, 4 points.
* For a problem with precisely two answers marked, one of which is correct, 1 points.
* All other cases, 0 points.
- Fill in the "number of solutions circled" column.

Table for Your Muliple Choice Solutions							Do Not Write Below			
Problem						number of solutions circled	1	2	B	x
1	(1a)	1 b	1 c	1 d	1 e					
2	2 a	(2b)	2 c	2d	2 e					
3	3 a	3 b	3c	(3d)	3 e					
4	4 a	(4b)	4 c	4d	4 e					
5	5 a	5 b	(5c)	5 d	5 e					
6	6a	6 b	6 c	6d	(6e)					
7	7 a	(7b)	7 c	7d	7 e					
8	8 a	8b	(8c)	8d	8 e					
9	(9a)	9 b	9 c	9d	9 e					
10	10a	10b	(10c)	10d	10e					
11	11a	(11b)	11c	11d	11e					
12	12a	12b	12c	(12d)	12e					
13	13a	(13b)	13 c	13d	13 e					
14	14a	14b	(14c)	14 d	14 e					
15	15a	15b	15c	(15d)	15 e					
16	(16a)	16b	16c	16d	16e					
17	(17a)	17b	17 c	17d	17 e					
18	18a	18b	(18c)	18d	18e					
19	19a	19b	(19c)	19d	19e					
20	20a	(20b)	20c	20d	20 e					
21	21a	21b	(21c)	21d	21 e					
22	22a	22 b	22 c	(22d)	22 e					
23	23a	23b	(23c)	23d	23 e					
24	24a	24b	24 c	(24)	24 e					
25	25a	25b	25 c	$25 \mathrm{~d}$	25 e					
							4	1	0	0

NOT TO HAND-IN PART
 STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint. For a definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then: $\ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate the integral

$$
\int_{0}^{\pi / 2} \cos ^{3} x d x
$$

1soln. Break off one cos to form the $d u=\cos x d x$ and so $u=\sin x$.

$$
\begin{aligned}
& \int \cos ^{3} x d x=\int\left(\cos ^{2} x\right) \cos x d x=\int\left(1-\sin ^{2} x\right) \cos x d x=\int \cos x d x-\int \sin ^{2} x \cos x d x=\sin x-\frac{1}{3} \sin ^{3} x+C \\
& \begin{aligned}
\int_{0}^{\pi / 2} \cos ^{3} x d x & =\left[\sin x-\frac{1}{3} \sin ^{3} x\right]_{0}^{\pi / 2} \\
& =\left[\sin \frac{\pi}{2}-\frac{1}{3} \sin ^{3} \frac{\pi}{2}\right]-\left[\sin 0-\frac{1}{3} \sin ^{3} 0\right]=\left[1-\frac{1}{3}\right]-[0-0]=\frac{2}{3}
\end{aligned}
\end{aligned}
$$

2. Evaluate the integral

$$
\int_{1}^{2} \frac{8}{x^{2}-2 x+2} d x
$$

Hint: complete the square in the denominator.
2soln. $x^{2}-2 x+2=(x-1)^{2}+1$. So $\frac{8}{x^{2}-2 x+2}=\frac{8}{(x-1)^{2}+1}$. So let $u=x-1$.

$$
\begin{aligned}
& u=x-1 \quad d u=d x \\
& u=0 \text { when } x=1, u=1 \text { when } x=2 \\
& \begin{aligned}
\int_{1}^{2} \frac{8}{x^{2}-2 x+2} d x & =8 \int_{0}^{1} \frac{1}{u^{2}+1} d u \\
& \left.=8 \tan ^{-1} u\right]_{0}^{1}=8\left(\frac{\pi}{4}-0\right)=2 \pi
\end{aligned}
\end{aligned}
$$

3. Evaluate the integral

$$
\int_{1}^{2} x \ln x d x
$$

3soln. $y=\ln x$ is easy to differentiate but hard to integrate so try parts with $u=\ln x$.

$$
\begin{aligned}
& u=\ln x, d u=\frac{d x}{x} ; d v=x d x, v=\frac{x^{2}}{2} \\
& \int_{1}^{2} x \ln x d x=\left[\frac{x^{2}}{2} \ln x\right]_{1}^{2}-\int_{1}^{2} \frac{x^{2}}{2} \frac{d x}{x}=2 \ln 2-\left[\frac{x^{2}}{4}\right]_{1}^{2}=2 \ln 2-\frac{3}{4}=\ln 4-\frac{3}{4}
\end{aligned}
$$

4. Evaluate the integral

$$
\int_{0}^{\pi / 8} e^{3 x} \cos (4 x) d x
$$

4soln. First we show that

$$
\int e^{3 x} \cos 4 x d x=\frac{e^{3 x}}{25}(3 \cos 4 x+4 \sin 4 x)+C
$$

We will use two integration by parts and the bring to the other side idea. For the two integration by parts, put the expontential function with either the u 's both times or the $d v$'s both times.

$$
\text { Way \# } 1
$$

For this way, for each integration by parts, we let the u involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=e^{3 x} & d v_{1}=\cos 4 x d x \\
d u_{1}=3 e^{3 x} d x & v_{1}=\frac{1}{4} \sin 4 x
\end{array}
$$

So by integration by parts

$$
\int e^{3 x} \cos 4 x d x=\frac{1}{4} e^{3 x} \sin 4 x-\frac{3}{4} \int e^{3 x} \sin 4 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=e^{3 x} & d v_{2}=\sin 4 x d x \\
d u_{2}=3 e^{3 x} d x & v_{2}=\frac{-1}{4} \cos 4 x
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{3 x} \cos 4 x d x & =\frac{1}{4} e^{3 x} \sin 4 x-\frac{3}{4}\left[\frac{-1}{4} e^{3 x} \cos 4 x-\frac{-3}{4} \int e^{3 x} \cos 4 x d x\right] \\
& =\frac{1}{4} e^{3 x} \sin 4 x+\frac{3}{4^{2}} e^{3 x} \cos 4 x-\frac{3^{2}}{4^{2}} \int e^{3 x} \cos 4 x d x
\end{aligned}
$$

Now solving for $\int e^{3 x} \cos 4 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{3^{2}}{4^{2}}\right] \int e^{3 x} \cos 4 x d x=\frac{1}{4} e^{3 x} \sin 4 x+\frac{3}{4^{2}} e^{3 x} \cos 4 x+K
$$

and so

$$
\begin{aligned}
\int e^{3 x} \cos 4 x d x & =\left[\frac{4^{2}}{25}\right]\left(\frac{1}{4} e^{3 x} \sin 4 x+\frac{3}{4^{2}} e^{3 x} \cos 4 x+K\right) \\
& =\frac{4}{25} e^{3 x} \sin 4 x+\frac{3}{25} e^{3 x} \cos 4 x+\left[\frac{K 4^{2}}{25}\right] \\
& =\frac{e^{3 x}}{25}(4 \sin 4 x+3 \cos 4 x)+\left[\frac{K 4^{2}}{25}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int e^{3 x} \cos 4 x d x= & \frac{e^{3 x}}{25}(3 \cos 4 x+4 \sin 4 x)+C \\
& \text { Way \# 2 }
\end{aligned}
$$

For this way, for each integration by parts, we let the $d v$ involve the expontenial function.

$$
\begin{array}{ll}
u_{1}=\cos 4 x & d v_{1}=e^{3 x} d x \\
d u_{1}=-4 \sin 4 x d x & v_{1}=\frac{1}{3} e^{3 x}
\end{array}
$$

So, by integration by parts

$$
\int e^{3 x} \cos 4 x d x=\frac{1}{3} e^{3 x} \cos 4 x-\frac{-4}{3} \int e^{3 x} \sin 4 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=\sin 4 x & d v_{2}=e^{3 x} d x \\
d u_{2}=4 \cos 4 x d x & v_{2}=\frac{1}{3} e^{3 x}
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{3 x} \cos 4 x d x & =\frac{1}{3} e^{3 x} \cos 4 x+\frac{4}{3}\left[\frac{1}{3} e^{3 x} \sin 4 x-\frac{4}{3} \int e^{3 x} \cos 4 x d x\right] \\
& =\frac{1}{3} e^{3 x} \cos 4 x+\frac{4}{3^{2}} e^{3 x} \sin 4 x-\frac{4^{2}}{3^{2}} \int e^{3 x} \cos 4 x d x
\end{aligned}
$$

Now solving for $\int e^{3 x} \cos 4 x d x$ (use the bring to the other side idea) we get

$$
\left[1+\frac{4^{2}}{3^{2}}\right] \int e^{3 x} \cos 4 x d x=\frac{1}{3} e^{3 x} \cos 4 x+\frac{4}{3^{2}} e^{3 x} \sin 4 x+K
$$

and so

$$
\begin{aligned}
\int e^{3 x} \cos 4 x d x & =\left[\frac{3^{2}}{3^{2}+4^{2}}\right]\left(\frac{1}{3} e^{3 x} \cos 4 x+\frac{4}{3^{2}} e^{3 x} \sin 4 x+K\right) \\
& =\frac{3}{25} e^{3 x} \cos 4 x+\frac{4}{25} e^{3 x} \sin 4 x+\left[\frac{K 3^{2}}{3^{2}+4^{2}}\right] \\
& =\frac{e^{3 x}}{25}(3 \cos 4 x+4 \sin 4 x)+\left[\frac{K 3^{2}}{3^{2}+4^{2}}\right]
\end{aligned}
$$

Thus

$$
\int e^{3 x} \cos 4 x d x=\frac{e^{3 x}}{25}(3 \cos 4 x+4 \sin 4 x)+C
$$

Doesn’t Work Way

If you try two integration by part with letting the exponential function be with the u one time and the $d v$ the other time, then when you use the bring to the other side idea, you will get $0=0$, which is true but not helpful.

> | Now evaluate the indefinite integral. |
| :--- |

So

$$
\begin{aligned}
\int_{0}^{\pi / 8} e^{3 x} \cos (4 x) d x & =\left.\left[\frac{e^{3 x}}{25}(3 \cos 4 x+4 \sin 4 x)\right]\right|_{\substack{x=\pi / 8 \\
x=0}} \\
& =\left[\frac{e^{3 \pi / 8}}{25}\left(3 \cos \frac{\pi}{2}+4 \sin \frac{\pi}{2}\right)\right]-\left[\frac{e^{0}}{25}(3 \cos 0+4 \sin 0)\right] \\
& =\left[\frac{e^{3 \pi / 8}}{25}(4)\right]-\left[\frac{1}{25}(3)\right]=\frac{4 e^{3 \pi / 8}-3}{25}
\end{aligned}
$$

5. Evaluate the integral

$$
\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}
$$

5soln.

$$
\begin{aligned}
& x=\sin \theta, 0 \leq \theta \leq \frac{\pi}{3}, d x=\cos \theta d \theta,\left(1-x^{2}\right)^{3 / 2}=\cos ^{3} \theta ; \\
& \int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}=\int_{0}^{\pi / 3} \frac{4 \sin ^{2} \theta \cos \theta d \theta}{\cos ^{2} \theta}=4 \int_{0}^{\pi / 3}\left(\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right) d \theta=4 \int_{0}^{\pi / 3}\left(\sec ^{2} \theta-1\right) d \theta=4[\tan \theta-\theta]_{0}^{\pi / 3}=4 \sqrt{3}-\frac{4 \pi}{3}
\end{aligned}
$$

6. Evaluate the integral

$$
\int_{0}^{\sqrt{3}} \frac{3 t^{2}+t+4}{t^{3}+t} d t
$$

6soln. Partial Fraction Decompostion. $t^{3}+t=t\left(t^{2}+1\right)=(t-0)\left(t^{2}+1\right)$.

$$
\frac{3 t^{2}+t+4}{t^{3}+t}=\frac{A}{t}+\frac{B t+C}{t^{2}+1}=\frac{A\left(t^{2}+1\right)+(B t+C) t}{t^{3}+t}
$$

So

$$
3 t^{2}+t+4=A\left(t^{2}+1\right)+(B t+C) t
$$

which gives

$$
\begin{array}{rlr}
t^{2}: & 3=A+B \\
t^{1}: & 1= & C \\
t^{0}: & 4= & A
\end{array}
$$

and so $B=1-3=3-4=-1$. Thus

$$
\int \frac{3 t^{2}+t+4}{t^{3}+t} d t=\int \frac{4}{t} d t+\int \frac{-t+1}{t^{2}+1} d t
$$

Note

$$
\begin{aligned}
\int_{0}^{\sqrt{3}} \frac{-t+1}{t^{2}+1} d t & =\frac{-1}{2} \int_{0}^{\sqrt{3}} \frac{2 t d t}{t^{2}+1} d t+\int_{0}^{\sqrt{3}} \frac{1}{t^{2}+1} d t=\left.\left[\frac{-1}{2} \ln \left|t^{2}+1\right|+\tan ^{-1} t\right]\right|_{0} ^{\sqrt{3}} \\
& =\left[\frac{-\ln 4}{2}+\tan ^{-1} \sqrt{3}\right]-\left[\frac{-\ln 1}{2}+\tan ^{-1} 0\right]=\left[\frac{-\ln \left(2^{2}\right)}{2}+\frac{\pi}{3}\right]-[0-0]=\frac{\pi}{3}-\ln 2
\end{aligned}
$$

Also

$$
\int_{0}^{\sqrt{3}} \frac{4}{t} d t=4 \lim _{b \rightarrow 0+} \int_{b}^{\sqrt{3}} \frac{d t}{t}=\left.4 \lim _{b \rightarrow 0+} \ln |t|\right|_{b} ^{\sqrt{3}}=4 \lim _{b \rightarrow 0+}[\ln \sqrt{3}-\ln b]=\infty
$$

7. Fill in the two blanks. By comparing the improper integral

$$
\int_{0}^{\pi} \frac{d t}{\sqrt{t}+\sin t}
$$

to the improper integral \qquad ,
the Direct Comparison Test (for improper integrals) gives that $\int_{0}^{\pi} \frac{d t}{\sqrt{t}+\sin t}$ is \qquad . 7soln.
$\int_{0}^{\pi} \frac{d t}{\sqrt{t}+\sin t}$. Since for $0 \leq t \leq \pi, 0 \leq \frac{1}{\sqrt{t}+\sin t} \leq \frac{1}{\sqrt{t}}$ and $\int_{0}^{\pi} \frac{d t}{\sqrt{t}}$ converges, then the original integral converges as well by the Direct Comparison Test.
8. Limit of a sequence. Evaluate

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{2 n}{n+1}}
$$

8soln.

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{2 n}{n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{2 n}{n+1}}=\sqrt{\lim _{n \rightarrow \infty}\left(\frac{2}{1+\frac{1}{n}}\right)}=\sqrt{2} \Rightarrow \text { converges }
$$

9. Limit of a sequence.

$$
\lim _{n \rightarrow \infty} \frac{\sin n}{n}
$$

9soln.

$$
\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0 \text { because }-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n} \Rightarrow \text { converges by the Sandwich Theorem for sequences }
$$

10. Find the vaule for b for which

$$
e^{b}+e^{2 b}+e^{3 b}+e^{4 b}+\ldots=9
$$

${ }^{10}$ soln. The geometric series $e^{b}+e^{2 b}+e^{3 b}+e^{4 b}+\ldots=\sum_{n=1}^{\infty} e^{n b}=\sum_{n=1}^{\infty}\left(e^{b}\right)^{n}$ has ratio $r=e^{b}$ and so it converges precisely when $\left|e^{b}\right|<1$. Note that

$$
\left|e^{b}\right|<1 \Longleftrightarrow 0<e^{b}<1 \Longleftrightarrow-\infty<b<0
$$

So let

$$
b<0 \quad \text { and so we know that } \quad \sum_{n=1}^{\infty}\left(e^{b}\right)^{n} \quad \text { converges. }
$$

Let $s_{n}=\sum_{k=1}^{n}\left(e^{b}\right)^{k}$. Then

$$
\begin{aligned}
& s_{n}=e^{b}+e^{2 b}+e^{3 b}+\ldots+e^{(n-1) b}+e^{n b} \\
& e^{b} s_{n}=e^{2 b}+e^{3 b}+e^{4 b}+\ldots+e^{n b}+e^{(n+1) b} \\
&\left(1-e^{b}\right) s_{n}=e^{b}-e^{(n+1) b} \\
& s_{n} \stackrel{\text { know }}{=} \stackrel{e^{b} \neq 1}{=} \frac{e^{b}-\left(e^{b}\right)^{n+1}}{1-e^{b}} \xrightarrow{\text { as } n \rightarrow \infty, \text { using that }\left|e^{b}\right|<1} \frac{e^{b}}{1-e^{b}} .
\end{aligned}
$$

Note

$$
9=\frac{e^{b}}{1-e^{b}} \Longleftrightarrow 9\left(1-e^{b}\right)=e^{b} \Longleftrightarrow 9-9 e^{b}=e^{b} \Longleftrightarrow 9=10 e^{b} \Longleftrightarrow e^{b}=\frac{9}{10} \Longleftrightarrow b=\ln \frac{9}{10}
$$

11. Determine the behavior of the series

$$
\sum_{n=1}^{\infty} \frac{2^{n} n!n!}{(2 n)!}
$$

11soln.

$$
\text { converges by the Ratio Test: } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{2^{n+1}(n+1)!(n+1)!}{(2 n+2)!} \cdot \frac{(2 n)!}{2^{n} n!n!}=\lim _{n \rightarrow \infty} \frac{2(n+1)(n+1)}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{n+1}{2 n+1}=\frac{1}{2}<1
$$

12. The series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}
$$

by the Direct Comparison Test,

12soln.

converges by the Direct Comparison Test with $\frac{1}{n^{3 / 2}}$, the nth term of a convergent p-series

$$
n^{2}+1>n^{2} \Rightarrow n^{2}+1>\sqrt{n} \cdot n^{3 / 2} \Rightarrow \frac{n^{2}+1}{\sqrt{n}}>n^{3 / 2} \Rightarrow \frac{\sqrt{n}}{n^{2}+1}<\frac{1}{n^{3 / 2}} \text { or use Limit Comparison Test with } \frac{1}{n^{3 / 2}} .
$$

13. The series

$$
\sum_{n=1}^{\infty} \frac{1}{1+\ln n}
$$

by the Limit Comparison Test,
diverges by the Limit Comparison Test (part 3) with $\frac{1}{n}$, the nth term of the divergent harmonic series:

$$
\lim _{n \rightarrow \infty} \frac{\left(\frac{1}{\operatorname{nn+n} n}\right)}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} \frac{n}{1+\ln n}=\lim _{n \rightarrow \infty} \frac{1}{\left(\frac{1}{n}\right)}=\lim _{n \rightarrow \infty} n=\infty
$$

13soln.

14. The series

$$
\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{n \ln n}
$$

is

14 soln.

$$
\text { converges conditionally since } f(x)=\frac{1}{x \ln x} \Rightarrow f^{\prime}(x)=-\frac{[\ln (x)+1]}{(x \ln x)^{2}}<0 \Rightarrow f(x) \text { is decreasing } \Rightarrow u_{n}>u_{n+1}>0 \text { for }
$$

$$
n \geq 2 \text { and } \lim _{n \rightarrow \infty} \frac{1}{n \ln n}=0 \Rightarrow \text { convergence; but by the Integral Test, } \int_{2}^{\infty} \frac{d x}{x \ln x}=\lim _{b \rightarrow \infty} \int_{2}^{b}\left(\frac{\left(\frac{1}{x}\right)}{\ln x}\right) d x
$$

$$
=\lim _{b \rightarrow \infty}[\ln (\ln x)]_{2}^{b}=\lim _{b \rightarrow \infty}[\ln (\ln b)-\ln (\ln 2)]=\infty \Rightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n \ln n} \text { diverges }
$$

15. Find the interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}(x-2)^{n}}{3 n}
$$

Recall that the interval of convergence is the set of x for which the power series converges, either absolutely or conditionally.

15soln.

$$
\lim _{n \rightarrow \infty}\left|\frac{u_{n+1}}{u_{n}}\right|<1 \Rightarrow \lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} 3^{2 n+2}(x-2)^{n+1}}{3(n+1)} \cdot \frac{3 n}{(-1)^{)^{3 n}} 3^{2 n}(x-2)^{n}}\right|<1 \Rightarrow|x-2| \lim _{n \rightarrow \infty} \frac{9 n}{n+1}=9|x-2|<1 \Rightarrow \frac{17}{9}<x<\frac{19}{9} ;
$$

when $x=\frac{17}{9}$ we have $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}}{3 n}\left(-\frac{1}{9}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{3 n}$, a divergent series; when $x=\frac{19}{9}$ we have $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}}{3 n}\left(\frac{1}{9}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3 n}$, a conditionally convergent series.
(a) the radius is $\frac{1}{9}$; the interval of convergence is $\frac{17}{9}<x \leq \frac{19}{9}$
(b) the interval of absolute convergence is $\frac{17}{9}<x<\frac{19}{9}$
(c) the series converges conditionally at $x=\frac{19}{9}$
16. Using the geometric series, find a power series representation about (i.e., centered at) $x=5$ for the function

$$
g(x)=\frac{3}{x-2}
$$

and indicate when the representation is valid.
16 soln.

$$
\begin{aligned}
& g(x)=\frac{3}{x-2}=\frac{3}{3-[-(x-5)]}=\frac{1}{1-\left[-\left(\frac{x-5}{3}\right)\right]}=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n}(x-5)^{n}, \text { which converges for } \\
& \left|\frac{x-5}{3}\right|<1 \text { or } 2<x<8 .
\end{aligned}
$$

17. Find the $3^{\text {rd }}$ order Taylor polynomial, about the center $x_{0}=1$, for the function $f(x)=x^{5}-x^{2}+5$. 17 soln . The computations below show that the $3^{\text {rd }}$ order Taylor polynomial, about the center $x_{0}=1$, for the function $f(x)=x^{5}-x^{2}+5$ is $p_{3}(x)=5+3(x-1)+9(x-1)^{2}+10(x-1)^{3}$.

we were given $x_{0}=1$			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right)$	$\frac{f^{(n)}\left(x_{0}\right)}{n!}$
0	$x^{5}-x^{2}+5$	5	$\frac{5}{0!}=\frac{5}{1}=5$
1	$5 x^{4}-2 x$	$5-2=3$	$\frac{3}{1!}=\frac{3}{1}=3$
2	$5 \cdot 4 x^{3}-2$	$20-2=18$	$\frac{18}{2!}=\frac{18}{2}=9$
3	$5 \cdot 4 \cdot 3$	$(5)(4)(3)$	$\frac{(5)(4)(3)}{3!}=\frac{(5)(4)(3)}{(3)(2)}=\frac{(5)(4)}{2}=10$

18. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{1}{(1-x)^{4}}
$$

about the center $x_{0}=0$ which is valid for $|x|<1$. Hint. Start with the Taylor series expansion

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad \text { valid for }|x|<1
$$

and differentiate (as many times as needed). Be careful and don't forget the chain rule:

$$
D_{x}(1-x)^{-1}=(-1)(1-x)^{-2} D_{x}(1-x)=(-1)(1-x)^{-2}(-1)=(1-x)^{-2}
$$

18 son.

Start with Geometric Series and take Derivatives as many times as need. Geometric Series is valid when $|x|<1$ po resulting power series expansions will also be valid when $|x|<1$.
$=$ Geometric Series $\Rightarrow(1-x)^{-1}=\sum_{k=0}^{\infty} x^{k} \quad \stackrel{D_{x}}{\Longrightarrow}(1-x)^{-2}=\sum_{k=1}^{\infty} k^{k-1} \longleftrightarrow x^{\infty} \quad \leftrightarrow k-3$

$$
\begin{aligned}
& \longrightarrow \stackrel{D_{x}}{\Rightarrow} 2(1-x)^{-3}=\sum_{k=2}^{\infty} k(k-1) x^{k-2} \xrightarrow{D_{x}} 2 \cdot 3(1-x)^{-4}=\sum_{k=3}^{\infty} k(k-1)(k-2) x^{k-3} \\
& =S_{o} \\
& \begin{array}{r}
(1-x)^{-4}=\sum_{k=3}^{\infty} \frac{k(k-1)(k-2)}{6} x^{k-3}=\sum_{n=0}^{\infty} \frac{(n+3)(n+2)(n+1)}{6} x^{n} \\
\quad \text { let } k-3=n \Rightarrow k=n+3
\end{array}
\end{aligned}
$$

19. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} .
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(-1,3)$.

19soln.

For each $x \in(-1,3)$, there exists $C \in(-1,3)$ so that

$$
\left|R_{5}(x)\right|=\left\lvert\, \frac{f^{(6)}(c)}{6!}\left(\left.(x-0)^{6}\left|=\frac{1}{6!} e^{-c}\right| x\right|^{6} \leq \frac{1}{6!} e^{-(-1)} 3^{6}\right.\right.
$$

20. Find an equation for the line tangent to the curve parameterized by

$$
\begin{aligned}
& x=2 t^{2}+3 \\
& y=t^{4}
\end{aligned}
$$

at the point defined by the value $t=-1$.
20soln.

$$
\begin{gathered}
t=-1 \Rightarrow x=5, \quad y=1 ; \frac{d x}{d t}=4 t, \frac{d y}{d t}=4 t^{3} \Rightarrow \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{4 t^{3}}{4 t}=\left.t^{2} \Rightarrow \frac{d y}{d x}\right|_{t=-1}=(-1)^{2}=1 ; \text { tangent line is } \\
y-1=1 \cdot(x-5) \text { or } y=x-4 ;
\end{gathered}
$$

21. Find the Cartesian coordinates of the point with polar coordinates

$$
\left(-3, \frac{5 \pi}{6}\right)
$$

21soln.

$$
x=-3 \cos \frac{5 \pi}{6}=\frac{3 \sqrt{3}}{2}, y=-3 \sin \frac{5 \pi}{6}=-\frac{3}{2} \Rightarrow \text { Cartesian coordinates are }\left(\frac{3 \sqrt{3}}{2},-\frac{3}{2}\right)
$$

22. A parametrization of a circle with center at $(0,0)$ and radius 1 , which is traced out twice in the clockwise direction is
22soln. $x(t)=\cos t$ and $y(t)=-\sin t$ for $0 \leq t \leq 4 \pi$. Note $[x(t)]^{2}+[y(t)]^{2}=1$ so the puffo is running around a circle with center $(0,0)$ and radius 1 . The negative on the y makes the tracing go clockwise while $0 \leq t \leq 4 \pi$ traces the circle twice.
23. Choose the correct graph of the polar equation $r=1-2 \sin (3 \theta)$.

23soln.

- $\left(\frac{1}{4}\right)($ period of $y=\sin (3 x))=\left(\frac{1}{4}\right)\left(\frac{2 \pi}{3}\right)=\frac{\pi}{6} \quad$ and
- $r=0 \Longleftrightarrow 1-2 \sin (3 \theta)=0 \Longleftrightarrow \sin (3 \theta)=\frac{1}{2}$

$$
\begin{aligned}
& \Longleftrightarrow\left[3 \theta \in\left\{\frac{\pi}{6}+2 \pi k: k \in \mathbb{N}\right\} \cup\left\{\frac{5 \pi}{6}+2 \pi k: k \in \mathbb{N}\right\}\right] \\
& \Longleftrightarrow\left[\theta \in\left\{\frac{\pi}{18}+\frac{12 \pi k}{18}: k \in \mathbb{N}\right\} \cup\left\{\frac{5 \pi}{18}+\frac{12 \pi k}{18}: k \in \mathbb{N}\right\}\right]
\end{aligned}
$$

	θ	θ	3θ	$\sin (3 \theta)$	$-2 \sin (3 \theta)$	$r=1-2 \sin (3 \theta)$
1	$\frac{0 \pi}{6} \rightarrow \frac{1 \pi}{6}$	$0 \rightarrow \frac{\pi}{6}$	$0 \rightarrow \frac{\pi}{2}$	$0 \rightarrow 1$	$0 \rightarrow-2$	$1 \rightarrow-1$
2	$\frac{1 \pi}{6} \rightarrow \frac{2 \pi}{6}$	$\frac{\pi}{6} \rightarrow \frac{\pi}{3}$	$\frac{\pi}{2} \rightarrow \pi$	$1 \rightarrow 0$	$-2 \rightarrow 0$	$-1 \rightarrow 1$
3	$\frac{2 \pi}{6} \rightarrow \frac{3 \pi}{6}$	$\frac{\pi}{3} \rightarrow \frac{\pi}{2}$	$\pi \rightarrow \frac{3 \pi}{2}$	$0 \rightarrow-1$	$0 \rightarrow 2$	$1 \rightarrow 3$
4	$\frac{3 \pi}{6} \rightarrow \frac{4 \pi}{6}$	$\frac{\pi}{2} \rightarrow \frac{2 \pi}{3}$	$\frac{3 \pi}{2} \rightarrow 2 \pi$	$-1 \rightarrow 0$	$2 \rightarrow 0$	$3 \rightarrow 1$
5	$\frac{4 \pi}{6} \rightarrow \frac{5 \pi}{6}$	$\frac{2 \pi}{3} \rightarrow \frac{5 \pi}{6}$		$0 \rightarrow 1$	$0 \rightarrow-2$	$1 \rightarrow-1$
6	$\frac{5 \pi}{6} \rightarrow \frac{6 \pi}{6}$	$\frac{5 \pi}{6} \rightarrow \pi$		$1 \rightarrow 0$	$-2 \rightarrow 0$	$-1 \rightarrow 1$
7	$\frac{6 \pi}{6} \rightarrow \frac{7 \pi}{6}$	$\pi \rightarrow \frac{7 \pi}{6}$		$0 \rightarrow-1$	$0 \rightarrow 2$	$1 \rightarrow 3$
8	$\frac{7 \pi}{6} \rightarrow \frac{8 \pi}{6}$	$\frac{7 \pi}{6} \rightarrow \frac{4 \pi}{3}$		$-1 \rightarrow 0$	$2 \rightarrow 0$	$3 \rightarrow 1$
9	$\frac{8 \pi}{6} \rightarrow \frac{9 \pi}{6}$	$\frac{4 \pi}{3} \rightarrow \frac{3 \pi}{2}$		$0 \rightarrow 1$	$0 \rightarrow-2$	$1 \rightarrow-1$
10	$\frac{9 \pi}{6} \rightarrow \frac{10 \pi}{6}$	$\frac{3 \pi}{2} \rightarrow \frac{5 \pi}{3}$		$1 \rightarrow 0$	$-2 \rightarrow 0$	$-1 \rightarrow 1$
11	$\frac{10 \pi}{6} \rightarrow \frac{11 \pi}{6}$	$\frac{5 \pi}{3} \rightarrow \frac{11 \pi}{6}$		$0 \rightarrow-1$	$0 \rightarrow 2$	$1 \rightarrow 3$
12	$\frac{11 \pi}{6} \rightarrow \frac{12 \pi}{6}$	$\frac{11 \pi}{6} \rightarrow 2 \pi$		$-1 \rightarrow 0$	$2 \rightarrow 0$	$3 \rightarrow 1$

note $r=0$ when $\theta=\frac{\pi}{18} \in\left[0, \frac{\pi}{6}\right]$						
1.1		$0 \rightarrow \frac{\pi}{18}$	$0 \rightarrow \frac{\pi}{6}$	$0 \rightarrow \frac{1}{2}$	$0 \rightarrow-1$	$1 \rightarrow 0$
1.2		$\frac{\pi}{18} \rightarrow \frac{\pi}{6}$	$\frac{\pi}{6} \rightarrow \frac{\pi}{2}$	$\frac{1}{2} \rightarrow 1$	$-1 \rightarrow-2$	$0 \rightarrow-1$

note $r=0$ when $\theta=\frac{5 \pi}{18} \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$						
2.1		$\frac{\pi}{6} \rightarrow \frac{5 \pi}{18}$	$\frac{\pi}{2} \rightarrow \frac{5 \pi}{6}$	$1 \rightarrow \frac{1}{2}$	$-2 \rightarrow-1$	$-1 \rightarrow 0$
2.2	$\frac{5 \pi}{18} \rightarrow \frac{\pi}{3}$	$\frac{5 \pi}{6} \rightarrow \pi$	$\frac{1}{2} \rightarrow 0$	$-1 \rightarrow 0$	$0 \rightarrow 1$	

| note $r=0$ when $\theta=\frac{13 \pi}{18} \in\left[\frac{2 \pi}{3}, \frac{5 \pi}{6}\right]$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.1 | $\frac{2 \pi}{3} \rightarrow \frac{13 \pi}{18}$ | $2 \pi \rightarrow \frac{13 \pi}{6}$ | $0 \rightarrow \frac{1}{2}$ | $0 \rightarrow-1$ | $1 \rightarrow 0$ |
| 5.2 | $\frac{13 \pi}{18} \rightarrow \frac{5 \pi}{6}$ | $\frac{13 \pi}{18} \rightarrow \frac{5 \pi}{2}$ | $\frac{1}{2} \rightarrow 1$ | $-1 \rightarrow-2$ | $0 \rightarrow-1$ |

note $r=0$ when $\theta=\frac{17 \pi}{18} \in\left[\frac{5 \pi}{6}, \pi\right]$						
6.1	$\frac{5 \pi}{6} \rightarrow \frac{17 \pi}{18}$	$\frac{5 \pi}{2} \rightarrow \frac{17 \pi}{6}$	$1 \rightarrow \frac{1}{2}$	$-2 \rightarrow-1$	$-1 \rightarrow 0$	
6.2		$\frac{17 \pi}{18} \rightarrow \pi$	$\frac{17 \pi}{6} \rightarrow 3 \pi$	$\frac{1}{2} \rightarrow 0$	$-1 \rightarrow 0$	$0 \rightarrow 1$

24. Express the area, as an integral (or as integrals) with respect to θ, of the region that (described using polar equations) lies inside $r=3 \sin \theta$ and outside $r=1+\sin \theta$.

- The desired area is $\int_{\pi / 6}^{\pi / 2}(3 \sin \theta)^{2} d \theta-\int_{\pi / 6}^{\pi / 2}(1+\sin \theta)^{2} d \theta$
- $\left(\frac{1}{4}\right)(\operatorname{period}$ of $y=3 \sin x$ and $y=1+\sin x)=\left(\frac{1}{4}\right)\left(\frac{2 \pi}{1}\right)=\frac{\pi}{2}$

	θ	$\sin \theta$	$r=3 \sin \theta$	$r=1+\sin \theta$
1	$0 \rightarrow \frac{\pi}{2}$	$0 \rightarrow 1$	$0 \rightarrow 3$	$1 \rightarrow 2$
2	$\frac{\pi}{2} \rightarrow \pi$	$1 \rightarrow 0$	$3 \rightarrow 0$	$2 \rightarrow 1$
3	$\pi \rightarrow \frac{3 \pi}{2}$	$0 \rightarrow-1$	$0 \rightarrow-3$	$1 \rightarrow 0$
4	$\frac{3 \pi}{2} \rightarrow 2 \pi$	$-1 \rightarrow 0$	$-3 \rightarrow 0$	$0 \rightarrow 1$

EXAMPLE 2 Find the area of the region that lies inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$.

FIGURE 5

SOLUTION The cardioid (see Example 7 in Section 10.3) and the circle are sketched in Figure 5 and the desired region is shaded. The values of a and b in Formula 4 are determined by finding the points of intersection of the two curves. They intersect when $3 \sin \theta=1+\sin \theta$, which gives $\sin \theta=\frac{1}{2}$, so $\theta=\pi / 6,5 \pi / 6$. The desired area can be found by subtracting the area inside the cardioid between $\theta=\pi / 6$ and $\theta=5 \pi / 6$ from the area inside the circle from $\pi / 6$ to $5 \pi / 6$. Thus

$$
A=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(3 \sin \theta)^{2} d \theta-\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(1+\sin \theta)^{2} d \theta
$$

Since the region is symmetric about the vertical axis $\theta=\pi / 2$, we can write

$$
A=2\left[\frac{1}{2} \int_{\pi / 6}^{\pi / 2} 9 \sin ^{2} \theta d \theta-\frac{1}{2} \int_{\pi / 6}^{\pi / 2}\left(1+2 \sin \theta+\sin ^{2} \theta\right) d \theta\right]
$$

25. Below is a graph of the (polar) equation $r=\cos (3 \theta)$, with one leaf shaded in of this three-leaved rose. Express the arc length of this ONE leaf as an integral with respect to θ.

- The Arc Length is $2 \int_{0}^{\pi / 6} \sqrt{\cos ^{2}(3 \theta)+9 \sin ^{2}(3 \theta)} d \theta$
- $\left(\frac{1}{4}\right)($ period of $y=\cos (3 x))=\left(\frac{1}{4}\right)\left(\frac{2 \pi}{3}\right)=\frac{\pi}{6}$

	θ	θ	3θ	$r=\cos (3 \theta)$
1	$\frac{0 \pi}{6} \rightarrow \frac{1 \pi}{6}$	$0 \rightarrow \frac{\pi}{6}$	$0 \rightarrow \frac{\pi}{2}$	$1 \rightarrow 0$
2	$\frac{1 \pi}{6} \rightarrow \frac{2 \pi}{6}$	$\frac{\pi}{6} \rightarrow \frac{\pi}{3}$	$\frac{\pi}{2} \rightarrow \pi$	$0 \rightarrow-1$
3	$\frac{2 \pi}{6} \rightarrow \frac{3 \pi}{6}$	$\frac{\pi}{3} \rightarrow \frac{\pi}{2}$	$\pi \rightarrow \frac{3 \pi}{2}$	$-1 \rightarrow 0$
4	$\frac{3 \pi}{6} \rightarrow \frac{4 \pi}{6}$	$\frac{\pi}{2} \rightarrow \frac{2 \pi}{3}$	$\frac{3 \pi}{2} \rightarrow 2 \pi$	$0 \rightarrow 1$
5	$\frac{4 \pi}{6} \rightarrow \frac{5 \pi}{6}$	$\frac{2 \pi}{3} \rightarrow \frac{5 \pi}{6}$		$1 \rightarrow 0$
6	$\frac{5 \pi}{6} \rightarrow \frac{6 \pi}{6}$	$\frac{5 \pi}{6} \rightarrow \pi$		$0 \rightarrow-1$
7	$\frac{6 \pi}{6} \rightarrow \frac{7 \pi}{6}$	$\pi \rightarrow \frac{7 \pi}{6}$		$-1 \rightarrow 0$
8	$\frac{7 \pi}{6} \rightarrow \frac{8 \pi}{6}$	$\frac{7 \pi}{6} \rightarrow \frac{4 \pi}{3}$		$0 \rightarrow 1$
9	$\frac{8 \pi}{6} \rightarrow \frac{9 \pi}{6}$	$\frac{4 \pi}{3} \rightarrow \frac{3 \pi}{2}$		$1 \rightarrow 0$
10	$\frac{9 \pi}{6} \rightarrow \frac{10 \pi}{6}$	$\frac{3 \pi}{2} \rightarrow \frac{5 \pi}{3}$		$0 \rightarrow-1$
11	$\frac{10 \pi}{6} \rightarrow \frac{11 \pi}{6}$	$\frac{5 \pi}{3} \rightarrow \frac{11 \pi}{6}$		$-1 \rightarrow 0$
12	$\frac{11 \pi}{6} \rightarrow \frac{12 \pi}{6}$	$\frac{11 \pi}{6} \rightarrow 2 \pi$		$0 \rightarrow 1$

