1. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{2}{3-x}
$$

about the center $x_{0}=0$ and state when this Taylor series is valid. Hint, by simple algebra,

$$
f(x)=\frac{2}{3-x}=\left(\frac{2}{3}\right)\left(\frac{1}{1-\frac{x}{3}}\right) .
$$

a. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} x^{n}$, valid for $|x|<1$
b. $\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^{n}$, valid for $|x|<3$
c. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<1$
d. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<3$
e. none of these
2. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{1}{(1-x)^{4}}
$$

about the center $x_{0}=0$ which is valid for $|x|<1$. Hint. Start with the Taylor series expansion

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad \text { valid for }|x|<1
$$

and differentiate (as many times as needed). Be careful and don't forget the chain rule:

$$
D_{x}(1-x)^{-1}=(-1)(1-x)^{-2} D_{x}(1-x)=(-1)(1-x)^{-2}(-1)=(1-x)^{-2}
$$

a. $\sum_{n=0}^{\infty} \frac{(n)(n-1)(n-2)}{6} x^{n-3}$
b. $\sum_{n=0}^{\infty}(n)(n-1)(n-2) x^{n}$
c. $\sum_{n=0}^{\infty} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
e. none of these
3. Using a known (commonly used) Taylor series, evaluate $\int \tan ^{-1}\left(t^{2}\right) d t$ as a power series.
a. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+3}}{(4 n+3)}$
b. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+3}}{(2 n+1)(4 n+3)}$
c. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+2}}{(2 n+3)}$
d. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+2}}{(2 n+1)}$
e. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+3}}{(2 n+3)}$
4. Find the $3^{\text {rd }}$ order Taylor polynomial for $f(x)=\frac{1}{x}$ about the center $x_{0}=2$.
a. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}$
b. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{4}(x-2)^{2}-\frac{3}{8}(x-2)^{3}$
c. $\frac{1}{2}+\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}+\frac{1}{16}(x-2)^{3}$
d. $\frac{1}{2}-\frac{1}{4} x+\frac{1}{4} x^{2}-\frac{3}{8} x^{3}$
e. none of these
5. Find the Taylor series for $f(x)=x^{4}-3 x^{2}+1$ about the center $x_{0}=1$.
a. $(x-1)^{4}-3(x-1)^{2}+1$
b. $-1-2(x-1)+3(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}$
c. $-1-2(x-1)+6(x-1)^{2}+24(x-1)^{3}+24(x-1)^{4}$
d. $-1-2(x-1)+3(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}+2(x-1)^{5}$
e. none of these
6. Find the Taylor series for

$$
f(x)=\frac{1}{x^{2}}
$$

about the center $x_{0}=1$.
a. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)!x^{n}$
b. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)!(x-1)^{n}$
c. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)(x-1)^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n+1}(n+1)(x-1)^{n}$
e. none of these
7. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} .
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(7,9)$.
a. $\frac{\left(e^{9}\right)\left(9^{5}\right)}{5!}$
b. $\frac{\left(e^{-9}\right)\left(9^{6}\right)}{6!}$
c. $\frac{\left(e^{-7}\right)\left(9^{6}\right)}{6!}$
d. $\frac{\left(e^{-0}\right)\left(9^{6}\right)}{6!}$
e. none of these
8. In this problem, you must show your work. Clearly explain your thought process.

Using Taylor's (BIG) Remainder Theorem, show that

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=e
$$

Hint: The instruction says to use Taylor's Remainder Theorem so you cannot use the facts listed on the Commonly Used Taylor Series handout. (Indeed, the facts listed on the Commonly Used Taylor Series handout are shown by using Taylor's Remainder Theorem so think of this problem as showing one of these facts.)
Hint. Consider the function $f(x)=e^{x}$.

