HAND IN PART

MARK BOX		
PROBLEM	POINTS	
$1-25$	100	
$\%$	100	

NAME: \qquad

PIN: 17

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND IN PART. Hand in only this part.
(2) STATEMENT OF MULTIPLE CHOICE PROBLEMS. Do not hand in this part.
- The mark box above indicates the problems along with their points.

Check that your copy of the exam has all of the problems.

- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a students request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): $\S 8.1-8.5,8.7-8.8,10.1-10.10,11.1-11.5$.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

Signature : \qquad

* Indicate (by circling) directly in the table below your solution to each problem.
* You may choice up to 2 answers for each problem. The scoring is as follows.
- For a problem with precisely one answer marked and the answer is correct, 4 points.
- For a problem with precisely two answers marked, one of which is correct, 2 points.
- For a problem with nothing marked (i.e., left blank), 1 point.
- All other cases, 0 points.
* Fill in the number of solutions circled column.

Your Solutions							Do Not Write Below			
Problem						number of solutions circled	4	2	1	0
1	1 a	1b	1 c	(1d)	1 e					
2	(2a)	2 b	2c	2 d	2 e					
3	3 a	(3b)	3 c	3 d	3 e					
4	4 a	4b	4c	(4d)	4 e					
5	5 a	5 b	(5c)	5 d	5 e					
6	6a	(6b)	6 c	6d	6 e					
7	7 a	7 b	7c	(7d)	7 e					
8	8a)	8 b	8 C	8 d	8 e					
9	9 a	9 b	(9c)	9d	9 e					
10	10a	10b	10c	(10d)	10 e					
11	(11a)	11b	11 c	11d	11 e					
12	12a	12b	(12c)	12d	12 e					
13	13a	13b	13 c	(13d)	13 e					
14	14a	14 b	(14c)	14d	14 e					
15	15 a	(15b)	15 c	15d	15 e					
16	16a	16 b	(160)	16d	16 e					
17	17a	17b	17c	17d	17 e					
18	18a	18b)	18c	18d	18 e					
19	19a	(19b)	19c	19d	19 e					
20	20a	20b	20c	(20d)	20 e					
21	21a	21 b	(21c)	21d	21 e					
22	22a	(22b)	22 c	22d	22 e					
23	23a	23b	23 c	(23d)	23 e					
24	24 a	24b	24c)	24d	24 e					
25	(25a)	$25 \mathrm{~b}$	(25c)	(25d)	(25e)	17				

STATEMENT OF MULTIPLE CHOICE PROBLEMS

These sheets of paper are not collected.

- Hint. For a typical (i.e. not improper) definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{3} x d x
$$

1soln. See hints above. Since

$$
\int \cos ^{3} x d x=\int\left(1-\sin ^{2} x\right) \cos x d x \stackrel{u=\sin x}{=} \int\left(1-u^{2}\right) d u=u-\frac{u^{3}}{3}+C=\sin x-\frac{1}{3} \sin ^{3} x+C
$$

we have that

$$
\left.\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{3} x d x=\left(\sin x-\frac{1}{3} \sin ^{3} x\right) \right\rvert\, \begin{aligned}
& x=\frac{\pi}{2} \\
& x=0
\end{aligned}=\left(1-\frac{1}{3}\right)-(0-0)=\frac{2}{3} .
$$

2. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{2} x d x .
$$

2soln. See hints above for why we do indefinite integral first. Since

$$
\begin{aligned}
& \int \cos ^{2} x d x=\int \frac{1+\cos 2 x}{2} d x=\frac{1}{2} \int(1+\cos 2 x) d x=\frac{1}{2} \int d x+\frac{1}{2} \int \cos 2 x d x=\frac{1}{2} \int d x+\frac{1}{4} \int \cos 2 x \cdot 2 d x \\
& =\frac{1}{2} x+\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

(and next you should take $D_{x}\left(\frac{x}{2}+\frac{\sin 2 x}{4}\right)$ and if you do indeed get $\cos ^{2} x$ then you can proceed to next step of) we have that

$$
\left.\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{2} x d x=\left(\frac{x}{2}+\frac{1}{4} \sin 2 x\right) \right\rvert\, \begin{aligned}
& x=\frac{\pi}{2} \\
& x=0
\end{aligned}=\left(\frac{\pi}{4}+0\right)+(0+0)=\frac{\pi}{4}
$$

3. Evaluate the integral

$$
\int_{x=1}^{x=e} \ln x d x
$$

3soln. Since

$$
\begin{aligned}
& \text { I EXAMPLE } 2 \text { Evaluate } \int \ln x d x \\
& \text { sotution Here we don't have much choice for } u \text { and } d v \text {. Let } \\
& \qquad u=\ln x \quad d v=d x \\
& \text { Then } d u=\frac{1}{x} d x \quad v=x
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
\int \ln x d x & =x \ln x-\int x \frac{d x}{x} \\
& =x \ln x-\int d x \\
& =x \ln x-x+C
\end{aligned}
$$

Integration by parts is effective in this example because the derivative of the funtiry $f(x)=\ln x$ is simpler than f.
we have that

$$
\int_{x=1}^{x=e} \ln x d x=\left.(x \ln x-x)\right|_{x=1} ^{x=e}=(e \ln e-e)-(1 \ln 1-1)=(e-e)-(0-1)=1
$$

4. Evaluate the integral

$$
\int_{x=0}^{x=\pi} e^{3 x} \cos 2 x d x
$$

4soln. Two integration by parts and the bring to the other side idea. For both the integration by parts, either let both u 's involve the expontential function or let both $d v$'s involve the expontential function; we'll do the latter way. So let

$$
\begin{array}{ll}
u_{1}=\cos 2 x & d v_{1}=e^{3 x} d x \\
d u_{1}=-2 \sin 2 x d x & v_{1}=\frac{1}{3} e^{3 x}
\end{array}
$$

So, by integration by parts

$$
\int e^{3 x} \cos 2 x d x=\frac{1}{3} e^{3 x} \cos 2 x-\frac{-2}{3} \int e^{3 x} \sin 2 x d x
$$

Now let

$$
\begin{array}{ll}
u_{2}=\sin 2 x & d v_{2}=e^{3 x} d x \\
d u_{2}=2 \cos 2 x d x & v_{2}=\frac{1}{3} e^{3 x}
\end{array}
$$

to get

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3}\left[\frac{1}{3} e^{3 x} \sin 2 x-\frac{2}{3} \int e^{3 x} \cos 2 x d x\right] \\
& =\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x-\frac{2^{2}}{3^{2}} \int e^{3 x} \cos 2 x d x
\end{aligned}
$$

Now to solve for $\int e^{3 x} \cos 2 x d x$ (use the bring to the other side idea) we have

$$
\left[1+\frac{2^{2}}{3^{2}}\right] \int e^{3 x} \cos 2 x d x=\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x+C
$$

and so

$$
\begin{aligned}
\int e^{3 x} \cos 2 x d x & =\left[\frac{3^{2}}{3^{2}+2^{2}}\right]\left(\frac{1}{3} e^{3 x} \cos 2 x+\frac{2}{3^{2}} e^{3 x} \sin 2 x+C\right) \\
& =\frac{3}{13} e^{3 x} \cos 2 x+\frac{2}{13} e^{3 x} \sin 2 x+\left[\frac{C 3^{2}}{3^{2}+2^{2}}\right] \\
& =\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)+\left[\frac{C 3^{2}}{3^{2}+2^{2}}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{x=0}^{x=\pi} e^{3 x} \cos 2 x d x & =\left.\frac{e^{3 x}}{13}(3 \cos 2 x+2 \sin 2 x)\right|_{x=0} ^{x=\pi}=\left[\frac{e^{3 \pi}}{13}(3+0)\right]-\left[\frac{e^{0}}{13}(3+0)\right] \\
& =\frac{3}{13}\left(e^{3 \pi}-1\right) .
\end{aligned}
$$

5. Evaluate the integral

$$
\int_{x=0}^{x=1} \frac{1}{\sqrt{4+x^{2}}} d x
$$

Do not overlook the square root sign in the denominator.
5 soln. For the indefinte integral, let
We set

$$
\begin{aligned}
& x=2 \tan \theta, \quad d x=2 \sec ^{2} \theta d \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}, \\
& 4+x^{2}=4+4 \tan ^{2} \theta=4\left(1+\tan ^{2} \theta\right)=4 \sec ^{2} \theta .
\end{aligned}
$$

URE 8.4 Reference triangle for $-2 \tan \theta$ (Example 1):
$\tan \theta=\frac{x}{2}$
$\sec \theta=\frac{\sqrt{4+x^{2}}}{2}$.

Then

$$
\begin{array}{rlrl}
\int \frac{d x}{\sqrt{4+x^{2}}} & =\int \frac{2 \sec ^{2} \theta d \theta}{\sqrt{4 \sec ^{2} \theta}}=\int \frac{\sec ^{2} \theta d \theta}{|\sec \theta|} & \quad \sqrt{\sec ^{2} \theta}=\sec \theta \\
& =\int \sec \theta d \theta & \text { we } \theta>0 \operatorname{lor}-\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
& =\ln |\sec \theta+\tan \theta|+C \\
& =\ln \left|\frac{\sqrt{4+x^{2}}}{2}+\frac{x}{2}\right|+C . & \text { From Fige, s. } 4
\end{array}
$$

Notice how we expressed $\ln |\sec \theta+\tan \theta|$ in terms of x : We drew a reference triangle for the original substitution $x=2 \tan \theta$ (Figure 8.4) and read the ratios from the triangle.

So

$$
\int_{x=0}^{x=1} \frac{1}{\sqrt{4+x^{2}}} d x=\ln \left|\frac{\sqrt{4+1}}{2}+\frac{1}{2}\right|-\ln \left|\frac{\sqrt{4+0}}{2}+\frac{0}{2}\right|=\ln \left|\frac{\sqrt{5}}{2}+\frac{1}{2}\right|-\ln \left|1+\frac{0}{2}\right|=\ln \left|\frac{\sqrt{5}}{2}+\frac{1}{2}\right| .
$$

6. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\sqrt{3}}{2}} \frac{4 x^{2}}{\left(1-x^{2}\right)^{3 / 2}} d x
$$

AND specify the initial substitution.
6soln. Trig Subtitute with initial substitution $x=\sin \theta$. Let

$$
\begin{aligned}
& x=\sin \theta, 0 \leq \theta \leq \frac{\pi}{3}, d x=\cos \theta d \theta,\left(1-x^{2}\right)^{3 / 2}=\cos ^{3} \theta \\
& \int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}=\int_{0}^{\pi / 3} \frac{4 \sin ^{2} \theta \cos \theta d \theta}{\cos ^{3} \theta}=4 \int_{0}^{\pi / 3}\left(\frac{1-\cos ^{2} \theta}{\cos ^{2} \theta}\right) d \theta=4 \int_{0}^{\pi / 3}\left(\sec ^{2} \theta-1\right) d \theta=4[\tan \theta-\theta]_{0}^{\pi / 3}=4 \sqrt{3}-\frac{4 \pi}{3}
\end{aligned}
$$

7. Let $y=p(x)$ be a polynomial of degree 5 .

What is the form of the partial fraction decomposition of

$$
\frac{p(x)}{\left(x^{2}-1\right)\left(x^{2}+1\right)^{2}} ?
$$

7soln. $\left(x^{2}-1\right)\left(x^{2}+1\right)^{2}=(x-1)(x+1)\left(x^{2}+1\right)^{2}$ where $x-1$ and $x+1$ are linear terms while $x^{2}+1$ is an irreducible quadratic. Now see the partial fraction handout from class. Correct answer is

$$
\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}
$$

8. Evaluate the integral

$$
\int_{x=1}^{x=3} \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} d x .
$$

8soln.

$$
\begin{aligned}
& \text { - } \quad \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}}=\frac{5 x^{2}+3 x-2}{x^{2}(x+2)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+2} \text {. Multiply by } x^{2}(x+2) \omega \\
& \text { get } 5 x^{2}+3 x-2=A x(x+2)^{2}+B(x+2)+C x^{2} . \text { Set } x=-2 \text { to get } C=3 \text {, and take } \\
& I=0 \text { to get } B=-1 \text {. Equating the coefficients of } x^{2} \text { gives } 5=A+C \Rightarrow A=2.50 \\
& \int \frac{5 x^{2}+3 x-2}{x^{2}+2 x^{3}} d x=\int\left(\frac{2}{x}-\frac{1}{x^{2}}+\frac{3}{x+2}\right) d x=2 \ln |x|+\frac{1}{x}+3 \ln |x+2|+C .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{x}-\frac{1}{x^{2}}+\frac{3 x(x+2)-(x+2)+3 x^{2}}{x+2}=\frac{2(x+2)}{x^{2}(x+2}=\frac{5 x^{2}+2}{x^{3}+2 x^{2}} \\
& \left.=\left[2 \ln |x+2|+2 \operatorname{tn} x+\frac{1}{x}\right] \right\rvert\, \begin{array}{l}
x=3 \\
x=1
\end{array}= \\
& {[3 \ln 5+2 \ln 3+2+2+2} \\
& 3 \ln 5-\ln 3-\frac{2}{3}
\end{aligned}
$$

9. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{6}} d x
$$

9soln. Indefinite integral: $\int x^{-6} d x=\frac{x^{-5}}{-5}+C$.
Note that he function $y=x^{-6}$ is undefined at $x=0$; therefore, $\int_{-1}^{1} x^{-6} d x$ is an improrper integral and we need to investigate the behaviour of $\int_{-1}^{0} x^{-6} d x$ and $\int_{0}^{1} x^{-6} d x$. Note

$$
\int_{0}^{1} x^{-6} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-6} d x=\left.\frac{-1}{5} \lim _{b \rightarrow 0^{+}} \frac{1}{x^{5}}\right|_{x=b} ^{x=1}=\frac{-1}{5} \lim _{b \rightarrow 0^{+}}\left[1-\frac{1}{b^{5}}\right] \stackrel{-\infty}{=}+\infty .
$$

Similiarly (or can just use symmetry)

$$
\int_{-1}^{0} x^{-6} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} x^{-6} d x=\left.\frac{-1}{5} \lim _{a \rightarrow 0^{-}} \frac{1}{x^{5}}\right|_{x=-1} ^{x=a}=\frac{-1}{5} \lim _{a \rightarrow 0^{-}}\left[\frac{1}{a^{5}}-\frac{1}{-1}\right] \stackrel{\left(\frac{1}{5}\right)(\infty)}{=}+\infty
$$

Thus

$$
\int_{-1}^{1} x^{-6} d x=\int_{-1}^{0} x^{-6} d x+\int_{0}^{1} x^{-6} d x=\stackrel{\text { see above }}{=} \infty=\infty
$$

and so $\int_{-1}^{1} x^{-6} d x$ diverges to infinity.
10. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{5}} d x
$$

10soln. Indefinite integral: $\int x^{-5} d x=\frac{x^{-4}}{-4}+C$.
Note that he function $y=x^{-5}$ is undefined at $x=0$; therefore, $\int_{-1}^{1} x^{-5} d x$ is an improrper integral and we need to investigate the behaviour of $\int_{-1}^{0} x^{-5} d x$ and $\int_{0}^{1} x^{-5} d x$. Note

$$
\int_{0}^{1} x^{-5} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} x^{-5} d x=\left.\frac{-1}{4} \lim _{b \rightarrow 0^{+}} \frac{1}{x^{4}}\right|_{x=b} ^{x=1}=\frac{-1}{4} \lim _{b \rightarrow 0^{+}}\left[1-\frac{1}{b^{4}}\right] \stackrel{1}{=}+\infty .
$$

Similiarly (also can do by symmetry)

$$
\int_{-1}^{0} x^{-5} d x=\lim _{a \rightarrow 0^{-}} \int_{-1}^{a} x^{-5} d x=\left.\frac{-1}{4} \lim _{a \rightarrow 0^{-}} \frac{1}{x^{4}}\right|_{x=-1} ^{x=a}=\frac{-1}{4} \lim _{a \rightarrow 0^{-}}\left[\frac{1}{a^{4}}-\frac{1}{-1}\right]
$$

So $\int_{-1}^{1} x^{-5} d x$ does not exist but also does not diverge to infinity.
11. Find

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{25 n^{7}-n^{2}+1}}{3 n^{4}+5 n^{2}-2}
$$

11soln. Divide through by the dominating force idea. Num.'s dominating force is $\sqrt{n^{7}}=n^{3.5}$. Den.'s dominating force is n^{4}. So the dominating force is $n^{4} \stackrel{\text { i.e. }}{=} \sqrt{n^{8}}$. So

$$
\frac{\sqrt{25 n^{7}-n^{2}+1}}{3 n^{4}+5 n^{2}-2}=\frac{\sqrt{\frac{25 n^{7}-n^{2}+1}{n^{8}}}}{\frac{3 n^{4}+5 n^{2}-2}{n^{4}}}=\frac{\sqrt{\frac{25}{n}-\frac{1}{n^{6}}+\frac{1}{n^{8}}}}{3+\frac{5}{n^{2}}-\frac{2}{n^{4}}} \xrightarrow{n \rightarrow \infty} \frac{\sqrt{0-0+0}}{3+0-0}=0
$$

12. For how many (distinct) values of $r \in \mathbb{R}$ does

$$
\sum_{n=2}^{\infty} r^{n}=\frac{1}{20} ?
$$

12soln. Let $s_{N}=\sum_{n=2}^{N} r^{n}$. Then

$$
\begin{aligned}
s_{N} & =r^{2}+r^{3}+\ldots+r^{N} \\
r s_{N} & =r^{3}+r^{4}+\ldots+r^{N+1} .
\end{aligned}
$$

So if $|r|<1$, then

$$
\begin{equation*}
s_{N}=\frac{r^{2}-r^{N+1}}{1-r} \xrightarrow{N \rightarrow \infty} \frac{r^{2}}{1-r} . \tag{1}
\end{equation*}
$$

So we want $\frac{r^{2}}{1-r}=\frac{1}{20}$. And

$$
\frac{r^{2}}{1-r}=\frac{1}{20} \quad \Leftrightarrow \quad 20 r^{2}=1-r \quad \Leftrightarrow \quad 20 r^{2}+r-1=0
$$

So we want

$$
r=\frac{-1 \pm \sqrt{1-(4)(20)(-1)}}{2(20)}=\frac{-1 \pm \sqrt{81}}{40}=\frac{-1 \pm 9}{40}= \begin{cases}\frac{-1+9}{40}=\frac{8}{40}=\frac{1}{5} & \text { for the }+ \\ \frac{-1-9}{40}=\frac{-10}{40}=\frac{-1}{4} & \text { for the }-\end{cases}
$$

Note that $\left|\frac{1}{5}\right|<1$ and $\left|\frac{-1}{4}\right|<1$, as was needed for (1) So there are 2 (distinct) values of r, namely $r=\frac{1}{5}$ and $r=\frac{-1}{4}$, such that $\sum_{n=2}^{\infty} r^{n}=\frac{1}{20}$.
13. Consider the following two series.

$$
\begin{aligned}
\text { Series A is } & \sum_{n=1}^{\infty} \frac{1}{n} \\
\text { Series B is } & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} .
\end{aligned}
$$

13soln. The series $\sum \frac{1}{n}$ is a p-series of the form $\sum \frac{1}{n^{p}}$ with $p=1 \leq 1$ so $\sum \frac{1}{n}$ diverges.
Now consider $\sum \frac{(-1)^{n}}{n}=\sum(-1)^{n} u_{n}$ where $u_{n}=\frac{1}{n}$. Clearly,
(1) $\frac{1}{n}>0$
(2) $\lim _{n \rightarrow \infty} \frac{1}{n}=0$
(3) $\frac{1}{n} \geq \frac{1}{n+1}$.

So by the Alternating Series Test (AST), $\sum \frac{(-1)^{n}}{n}$ converges. Thus $\sum \frac{(-1)^{n}}{n}$ is conditionally convergent since $\sum \frac{(-1)^{n}}{n}$ converges but $\sum\left|\frac{(-1)^{n}}{n}\right|$ diverges.
14. The formal series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
$$

14soln. converges conditionally as can be shown by using the LCT with $b_{n}=\frac{1}{n}$ as well as the AST.

$$
\begin{aligned}
& \text { Abs. Cons? Consider } \sum\left|(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}\right|=\sum \frac{1}{\sqrt{(n+2)(n+7)}} \\
& \frac{\text { Thinking Land }}{a_{n}} \frac{1}{\sqrt{(n+2)(n+7)}} \stackrel{n \text { big }}{\approx} \frac{1}{\sqrt{n \cdot n}}=\frac{1}{n}=b_{n} \\
& \begin{array}{l}
\text { LaT. } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{(n+2)(n+7)}}=1.12
\end{array} \\
& \xrightarrow{\text { moredetails }}=\lim _{n \rightarrow \infty} \sqrt{\left[\frac{n^{2}}{(n+2)(n+7)}\right]}=\sqrt{1}=1=L \\
& \text { so } \sum b_{n} \& \sum a_{n} \text { do the same thing. } \sum b_{n} \text { div (harmonic aries) } \\
& \text { to } \sum\left|(-1)^{n} \frac{1}{(n+2)(n+7)}\right| d v g \text { so not abs, cons, } \\
& \text { Cons. Cons? Ld' = use AST wT } 0 \leq u_{n}=\frac{1}{\sqrt{(n+2)(n+7)}} \\
& \text { (1) } u_{n} \text { dec, ie } u_{n}>u_{n+1} \text { ? es clear. } \\
& \text { (2) } \lim _{n \rightarrow \infty} \frac{1}{\sqrt{(n+x)(n+7)}}=0 \text { (3) }\left\{\begin{array}{l}
\text { (1, by AST, } \\
\sum(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
\end{array}\right.
\end{aligned}
$$

15. Consider the formal series $\sum_{n=1}^{\infty} a_{n}$ where

$$
a_{n}=(-1)^{n} \frac{(n+1)!}{(2 n)!}
$$

and let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

15soln. Below we show $\rho=0$. Thus $\sum(-1)^{n} \frac{(n+1)!}{(2 n)!}$ is absolutely convergent (by the Ratio Test).

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & =\frac{(n+2)!}{(2 n+2)!} \frac{(2 n)!}{(n+1)!}=\frac{(n+2)!}{(n+1)!} \frac{(2 n)!}{(2 n+2)!}=\frac{n+2}{(2 n+1)(2 n+2)}=\frac{\frac{n+2}{n^{2}}}{\frac{(2 n+1)}{n} \frac{(2 n+2)}{n}} \\
& =\frac{\frac{1}{n}+\frac{2}{n^{2}}}{\left(2+\frac{1}{n}\right)\left(2+\frac{2}{n}\right)} \xrightarrow{n \rightarrow \infty} \frac{0+0}{(2+0)(2+0)}=0 \stackrel{\text { def }}{=} \rho .
\end{aligned}
$$

Thus $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$ and so $\sum(-1)^{n} \frac{(n+1)!}{(2 n)!}$ is absolutely convergent by the Ratio Test.
16. What is the LARGEST interval for which the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}
$$

is absolutely convergent?
$\mathbf{1 6 s o l n}$. The LARGEST interval for which the series $\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}$ is absolutely convergent is $(-5,-1)$.

17. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$?
$\mathbf{1 7 s o l n}$. We are given that

$$
\begin{array}{ll}
\sum c_{n} x^{n} \text { is absolutely convergent when } & |x|<16 \\
\sum c_{n} x^{n} \text { is divergent when } & |x|>16 .
\end{array}
$$

Thus

$$
\begin{array}{ll}
\sum c_{n} x^{2 n} \stackrel{\text { note }}{=} \sum c_{n}\left(x^{2}\right)^{n} & \text { is absolutely convergent when } \\
\sum c_{n} x^{2 n} \stackrel{\left|x^{2}\right|<16, \text {,i.e., when }|x|<4}{=} \sum c_{n}\left(x^{2}\right)^{n} & \text { is divergent when }
\end{array}\left|x^{2}\right|>16 \text {,i.e., when }|x|>4 .
$$

Thus the radius of convergence of the power series $\sum c_{n} x^{2 n}$ is 4 .
18. In class we learned that, for each $x \in \mathbb{R}$,

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} .
$$

Use this to find a Taylor expansion about the center $x_{0}=0$ (i.e., Maclaurin series) for

$$
f(x)=x \cos (4 x) .
$$

18soln. $x \cos (4 x)=x \sum_{n=0}^{\infty}(-1)^{n} \frac{(4 x)^{2 n}}{(2 n)!}=x^{1} \sum_{n=0}^{\infty}(-1)^{n} \frac{4^{2 n} x^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{4^{2 n} x^{2 n+1}}{(2 n)!} \stackrel{\text { or }}{=} \sum_{n=0}^{\infty}(-1)^{n} \frac{16^{n} x^{2 n+1}}{(2 n)!}$
19. Find the Taylor series for $f(x)=(1-5 x)^{-3}$ about the center $x_{0}=0$.

19soln. The computations below show that the Maclaurin series for $f(x)=(1-5 x)^{-3}$ is $\sum_{n=0}^{\infty} \frac{5^{n}(n+1)(n+2)}{2} x^{n}$.

we were given $x_{0}=0$				pattern search for$\frac{f^{(n)}\left(x_{0}\right)}{n!}$
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right)$	$\frac{f^{(n)}\left(x_{0}\right)}{n!}$	
0	$(1-5 x)^{-3}$	1	1	$5^{0} \frac{(0+1)(0+2)}{2}$
1	$\begin{array}{r} (-3)(1-5 x)^{-4}(-5)= \\ (5)(3)(1-5 x)^{-4} \end{array}$	$5(3)$	$5 \frac{(3)}{1!}$	$5^{1} \frac{(1+1)(1+2)}{2}$
2	$\begin{gathered} (5)(3)(-4)(1-5 x)^{-5}(-5)= \\ 5^{2}(3)(4)(1-5 x)^{-5} \end{gathered}$	$5^{2}(3)(4)$	$5^{2} \frac{(3)(4)}{2!}$	$5^{2} \frac{(2+1)(2+2)}{2}$
3	$\begin{gathered} 5^{2}(3)(4)(-5)(1-5 x)^{-6}(-5)= \\ 5^{3}(3)(4)(5)(1-5 x)^{-6} \end{gathered}$	$5^{3}(3)(4)(5)$	$5^{3} \frac{(3)(4)(5)}{3!}$	$5^{3} \frac{(3+1)(3+2)}{2}$
4	$\begin{gathered} 5^{3}(3)(4)(5)(-6)(1-5 x)^{-7}(-5)= \\ 5^{4}(3)(4)(5)(6)(1-5 x)^{-7} \\ \hline \end{gathered}$	$5^{4}(3)(4)(5)(6)$	$5^{4} \frac{(3)(4)(5)(6)}{4!}$	$5^{4} \frac{(4+1)(4+2)}{2}$
n	$5^{n}[(3)(4)(5) \cdots(n+2)](1-5 x)^{-(n+3)}$	$5^{n}[(3)(4)(5) \cdots(n+2)]$	$5^{n} \frac{(3)(4)(5) \cdots(n+2)}{n!}$	$5^{n} \frac{(n+1)(n+2)}{2}$

Pattern search for $\frac{f^{(n)}\left(x_{0}\right)}{n!}$:

$$
\begin{aligned}
\frac{f^{(n)}\left(x_{0}\right)}{n!} & =5^{n} \frac{(3)(4)(5) \cdots(n+2)}{n!}=5^{n} \frac{1}{2} \frac{(2)(3)(4)(5) \cdots(n+2)}{n!}=5^{n} \frac{1}{2} \frac{(n+2)!}{n!} \\
& =5^{n} \frac{1}{2} \frac{(n)!(n+1)(n+2)}{n!}=5^{n} \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

20. Consider the function $f(x)=e^{x}$ over the interval $(-1,3)$. The $4^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}=\sum_{n=0}^{4} \frac{x^{n}}{n!} .
$$

The $4^{\text {th }}$ order Remainder term $R_{4}(x)$ is defined by $R_{4}(x)=f(x)-P_{4}(x)$ and so $e^{x} \approx P_{4}(x)$ where the approximation is within an error of $\left|R_{4}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{4}(x)\right|$ that is valid for each $x \in(-1,3)$.
20soln. By Taylor's Remainder Theorem, for each $x \in(-1,3)$, there exists c between x and 0 so that

$$
R_{4}(x)=\frac{f^{(5)}(c)(x-0)^{5}}{5!}
$$

Note that if $x \in(-1,3)$ and c is between x and 0 , then $c \in(-1,3)$. Also, $\left|f^{(5)}(x)\right|=e^{x}$.
So for each $x \in(-1,3)$,

$$
\left|R_{4}(x)\right|=\left|\frac{f^{(5)}(c)(x-0)^{5}}{5!}\right|=\frac{\left|f^{(5)}(c)\right||x|^{5}}{5!}=\frac{e^{c}|x|^{5}}{5!} \leq \frac{e^{c} 3^{5}}{5!} \leq \frac{e^{3} 3^{5}}{5!}
$$

21. The point with a polar coordinate renrecontation $\left(-1 \frac{\pi}{-}\right)$ alen has a polar coordinate representation $(+1, \theta)$ where θ is

21soln.

A point with polar coordinates (r, θ) has Cartesian coordinates $(r \cos \theta, r \sin \theta)$.
So we want to find θ so that

$$
(+1) \cos \theta \stackrel{\text { want }}{=}(-1) \cos \frac{\pi}{4} \stackrel{\text { know }}{=} \frac{-\sqrt{2}}{2}
$$

and

$$
(+1) \sin \theta \stackrel{\text { want }}{=}(-1) \sin \frac{\pi}{4} \stackrel{\text { know }}{=} \frac{-\sqrt{2}}{2}
$$

So we can take $\theta=\frac{5 \pi}{4}$.
22. Find $\frac{d y}{d x}$ for the parameterized curve given by

$$
\begin{aligned}
& x=2 t^{2}+1 \\
& y=3 t^{3}+2
\end{aligned}
$$

for ${ }^{-17} \leq t \leq 17$.
22 soln.

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{9 t^{2}}{4 t}=\frac{9 t}{4}
$$

23. Express the area enclosed by the curve given by (in polar coordinates)

$$
r=2+2 \sin \theta
$$

as an integral.

23soln.

helpful table for graphing				
period of $\sin (\mathbf{1} \theta)=\frac{2 \pi}{\mathbf{1}}=2 \pi$ and so $\frac{\text { period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}=\Delta \theta$				
	θ	$\sin \theta$	$2 \sin \theta$	$r=2+2 \sin \theta$
1	$0 \rightarrow \frac{\pi}{2}$	$0 \rightarrow 1$	$0 \rightarrow 2$	$2 \rightarrow 4$
2	$\frac{\pi}{2} \rightarrow \pi$	$1 \rightarrow 0$	$2 \rightarrow 0$	$4 \rightarrow 2$
(3)	$\pi \rightarrow \frac{3 \pi}{2}$	$0 \rightarrow-1$	$0 \rightarrow-2$	$2 \rightarrow 0$
(4)	$\frac{3 \pi}{2} \rightarrow 2 \pi$	$-1 \rightarrow 0$	$-2 \rightarrow 0$	$0 \rightarrow 2$

The curve encloses an area (looks like an upside down heart) once as θ goes from 0 to 2π.
So let $\alpha=0$ and $\beta=2 \pi$
The area of a sector (of a circle with radius r determined by an angle θ) is $\frac{1}{2} r^{2} \theta$.
So the desired area, expressed as an integral, is

$$
\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}(2+2 \sin \theta)^{2} d \theta .
$$

24. Express the arc length of the heart traced out by the curve given by (in polar coordinates)

$$
r=2+2 \sin \theta
$$

as an integral.
24soln. See previous problem for graph. Note the heart is traced out once as θ goes from 0 to 2π. So let $\alpha=0$ and $\beta=2 \pi$
So the arc length, expressed as an integral, is

$$
A L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta
$$

25. Prof. Girardi likes
(a) moose
(b) colored chalk
(C) peanut butter
(d) mathematics
(e) All of the above.

Good Luck in your math fun to come!

