HAND IN PART

MARK BOX		
PROBLEM	POINTS	
$1-25$	100	
$\%$	100	

NAME: \qquad

PIN: \qquad

INSTRUCTIONS

- This exam comes in two parts.
(1) HAND IN PART. Hand in only this part.
(2) STATEMENT OF MULTIPLE CHOICE PROBLEMS. Do not hand in this part.
- The mark box above indicates the problems along with their points.

Check that your copy of the exam has all of the problems.

- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: books, electronic devices, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a students request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): $\S 8.1-8.5,8.7-8.8,10.1-10.10,11.1-11.5$.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

Signature : \qquad

* Indicate (by circling) directly in the table below your solution to each problem.
* You may choice up to 2 answers for each problem. The scoring is as follows.
- For a problem with precisely one answer marked and the answer is correct, 4 points.
- For a problem with precisely two answers marked, one of which is correct, 2 points.
- For a problem with nothing marked (i.e., left blank), 1 point.
- All other cases, 0 points.
* Fill in the number of solutions circled column.

Your Solutions							Do Not Write Below			
Problem						number of solutions circled	4	2	1	0
1	1 a	1 b	1c	1d	1 e					
2	2 a	2b	2c	2d	2 e					
3	3 a	3b	3c	3d	3 e					
4	4a	4b	4 c	4d	4 e					
5	5 a	5b	5 c	5d	5 e					
6	6a	6b	6 c	6d	6 e					
7	7 a	7 b	7 c	7d	7 e					
8	8 a	8b	8 c	8d	8 e					
9	9a	9b	9c	9d	9 e					
10	10a	10b	10c	10d	10e					
11	11a	11b	11c	11d	11e					
12	12a	12b	12c	12d	12 e					
13	13a	13b	13c	13d	13 e					
14	14a	14b	14 c	14d	14 e					
15	15a	15b	15c	15d	15 e					
16	16a	16b	16c	16d	16e					
17	17a	17 b	17c	17d	17e					
18	18a	18b	18c	18d	18 e					
19	19a	19b	19c	19d	19 e					
20	20a	20b	20c	20d	20 e					
21	21a	21b	21c	21d	21 e					
22	22a	22b	22c	22d	22 e					
23	23a	23b	23c	23d	23 e					
24	24a	24b	24 c	24d	24 e					
25	25a	25b	25 c	25d	25 e					

STATEMENT OF MULTIPLE CHOICE PROBLEMS

These sheets of paper are not collected.

- Hint. For a typical (i.e. not improper) definite integral problems $\int_{a}^{b} f(x) d x$.
(1) First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$.
(2) Next check if you did the indefininte integral correctly by using the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$).
(3) Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint. If $a, b>0$ and $r \in \mathbb{R}$, then $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\quad \ln \left(a^{r}\right)=r \ln a$.

1. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{3} x d x
$$

a. $\frac{-1}{3}$
b. $\frac{-2}{3}$
c. $\frac{1}{3}$
d. $\frac{2}{3}$
e. None of the others.
2. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{2} x d x
$$

a. $\frac{\pi}{4}$
b. π
c. $\frac{3 \pi}{4}$
d. 2π
e. None of the others.
3. Evaluate the integral

$$
\int_{x=1}^{x=e} \ln x d x
$$

a. 0
b. 1
c. e
d. $2 e$
e. None of the others.
4. Evaluate the integral

$$
\int_{x=0}^{x=\pi} e^{3 x} \cos 2 x d x
$$

a. 0
b. $\frac{1}{5}\left(3 e^{3 \pi}\right)$
c. $\frac{1}{5}\left(3 e^{3 \pi}-3\right)$
d. $\frac{1}{13}\left(3 e^{3 \pi}-3\right)$
e. None of the others.
5. Evaluate the integral

$$
\int_{x=0}^{x=1} \frac{1}{\sqrt{4+x^{2}}} d x
$$

Do not overlook the square root sign in the denominator.
a. $\frac{1}{2} \arctan \frac{1}{2}$
b. $\arctan \frac{1}{2}$
c. $\ln \left|\frac{\sqrt{5}}{2}+\frac{1}{2}\right|$
d. $\ln \left|\frac{\sqrt{5}}{2}+\frac{1}{2}\right|-\ln |2|$
e. None of the others.
6. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\sqrt{3}}{2}} \frac{4 x^{2}}{\left(1-x^{2}\right)^{3 / 2}} d x
$$

AND specify the initial substitution.
a. $\ln \left|\left(4 \sqrt{3}-\frac{4 \pi}{3}\right)\right|$ using the initial substitute $x=\sin \theta$.
b. $\left(4 \sqrt{3}-\frac{4 \pi}{3}\right)$ using the initial substitute $x=\sin \theta$
c. $\ln \left|\left(4 \sqrt{3}-\frac{4 \pi}{3}\right)\right|$ using the initial substitute $x=\sec \theta$.
d. $\left(4 \sqrt{3}-\frac{4 \pi}{3}\right)$ using the initial substitute $x=\sec \theta$
e. None of the others.
7. Let $y=p(x)$ be a polynomial of degree 5 .

What is the form of the partial fraction decomposition of

$$
\frac{p(x)}{\left(x^{2}-1\right)\left(x^{2}+1\right)^{2}} ?
$$

Here A, B, C, D, E and F are constants.
a. $\frac{A}{x^{2}-1}+\frac{B}{\left(x^{2}+1\right)^{2}}$
b. $\frac{A x+B}{x^{2}-1}+\frac{C x+D}{\left(x^{2}+1\right)^{2}}$
c. $\frac{A x+B}{x^{2}-1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}$
d. $\frac{A}{x-1}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+1}+\frac{E x+F}{\left(x^{2}+1\right)^{2}}$
e. None of the others.
8. Evaluate the integral

$$
\int_{x=1}^{x=3} \frac{5 x^{2}+3 x-2}{x^{3}+2 x^{2}} d x
$$

a. $3 \ln 5-\ln 3-\frac{2}{3}$
b. $3 \ln 5-\ln 3-\frac{8}{3}$
c. $\ln 5-\frac{2}{3}$
d. $\frac{2}{3}-\ln 5$
e. None of the others.
9. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{6}} d x
$$

a. $\frac{2}{5}$
b. $\frac{-2}{5}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity e. None of the others.
10. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{5}} d x
$$

a. 0
b. $\frac{1}{2}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
11. Find

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{25 n^{7}-n^{2}+1}}{3 n^{4}+5 n^{2}-2}
$$

a. 0
b. $\frac{5}{3}$
c. $\frac{25}{3}$
d. ∞
e. None of the others.
12. For how many (distinct) values of $r \in \mathbb{R}$ does

$$
\sum_{n=2}^{\infty} r^{n}=\frac{1}{20} ?
$$

a. 0 (i.e., none)
b. 1
c. 2
d. 3
e. None of the others.
13. Consider the following two series.

$$
\begin{aligned}
\text { Series A is } & \sum_{n=1}^{\infty} \frac{1}{n} \\
\text { Series B is } & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} .
\end{aligned}
$$

a. both series converge absolutely
b. both series diverge
c. series A converges conditionally and series B diverges
d. series A diverges and series B converges conditionally
e. None of the others.
14. The formal series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
$$

a. is absolutely convergent, as can be shown by the limit comparison test (LCT) with $b_{n}=\frac{1}{n^{2}}$.
b. is conditionally convergent as can by shown by using only the alternating series test (AST) and not other tests.
c. converges conditionally as can be shown by using the LCT with $b_{n}=\frac{1}{n}$ as well as the AST.
d. diverges.
e. None of the others.
15. Consider the formal series $\sum_{n=1}^{\infty} a_{n}$ where

$$
a_{n}=(-1)^{n} \frac{(n+1)!}{(2 n)!}
$$

and let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

a. $\sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=\frac{1}{2}$.
b. $\sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=0$.
c. $\rho=1$ so the Ratio Test fails for $\sum_{n=1}^{\infty} a_{n}$
d. $\sum_{n=1}^{\infty} a_{n}$ diverges
e. None of the others.
16. What is the LARGEST interval for which the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}
$$

is absolutely convergent?
a. $(1,5)$
b. $(-4,-2)$
c. $(-5,-1)$
d. $[-5,-1]$
e. None of the others.
17. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$?
a. 256 .
b. 4 .
c. 1 .
d. 16 .
e. None of the others.
18. In class we learned that, for each $x \in \mathbb{R}$,

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} .
$$

Use this to find a Taylor expansion about the center $x_{0}=0$ (i.e., Maclaurin series) for

$$
f(x)=x \cos (4 x)
$$

a. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{n!}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n+1}}{(2 n)!}$
c. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 4^{2 n} x^{2 n}}{(2 n)!}$
d. $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^{2 n} x^{2 n+1}}{(2 n)!}$
e. None of the others.
19. Find the Taylor series for $f(x)=(1-5 x)^{-3}$ about the center $x_{0}=0$.
a. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5^{n}(n+1)(n+2)}{2} x^{n}$
b. $\sum_{n=0}^{\infty} \frac{5^{n}(n+1)(n+2)}{2} x^{n}$
c. $\sum_{n=0}^{\infty}(-1)^{n+1} \frac{5^{n}}{n!} x^{n}$
d. $\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$
e. None of the others.
20. Consider the function $f(x)=e^{x}$ over the interval $(-1,3)$. The $4^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{4}(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}=\sum_{n=0}^{4} \frac{x^{n}}{n!} .
$$

The $4^{\text {th }}$ order Remainder term $R_{4}(x)$ is defined by $R_{4}(x)=f(x)-P_{4}(x)$ and so $e^{x} \approx P_{4}(x)$ where the approximation is within an error of $\left|R_{4}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{4}(x)\right|$ that is valid for each $x \in(-1,3)$.
a. $\frac{\left(e^{-1}\right)\left(3^{4}\right)}{4!}$
b. $\frac{\left(e^{3}\right)\left(3^{4}\right)}{4!}$
c. $\frac{\left(e^{-1}\right)\left(3^{5}\right)}{5!}$
d. $\frac{\left(e^{3}\right)\left(3^{5}\right)}{5!}$
e. None of the others.
21. The point with a polar coordinate representation $\left(-1, \frac{\pi}{4}\right)$ also has a polar coordinate representation $\left({ }^{+} 1, \theta\right)$ where θ is
a. $\frac{\pi}{4}$.
b. $\frac{3 \pi}{4}$.
c. $\frac{5 \pi}{4}$.
d. $\frac{7 \pi}{4}$.
e. None of the others.
22. Find $\frac{d y}{d x}$ for the parameterized curve given by

$$
\begin{aligned}
& x=2 t^{2}+1 \\
& y=3 t^{3}+2
\end{aligned}
$$

for ${ }^{-17} \leq t \leq 17$.
a. $\frac{d y}{d x}=\frac{4}{9 t}$.
b. $\frac{d y}{d x}=\frac{9 t}{4}$.
c. $\frac{d y}{d x}=4 t$.
d. $\frac{d y}{d x}=9 t^{2}$.
e. None of the others.
23. Express the area enclosed by the curve given by (in polar coordinates)

$$
r=2+2 \sin \theta
$$

as an integral.
a. $\int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta) d \theta$.
b. $\frac{1}{2} \int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta) d \theta$.
c. $\int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta)^{2} d \theta$.
d. $\frac{1}{2} \int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta)^{2} d \theta$.
e. None of the others.
24. Express the arc length of the heart traced out by the curve given by (in polar coordinates)

$$
r=2+2 \sin \theta
$$

as an integral.
a. $\int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta) d \theta$
b. $\int_{\theta=0}^{\theta=2 \pi}(2+2 \sin \theta)^{2} d \theta$
c. $\int_{\theta=0}^{\theta=2 \pi} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta$
d. $\frac{1}{2} \int_{\theta=0}^{\theta=2 \pi} \sqrt{(2+2 \sin \theta)^{2}+(2 \cos \theta)^{2}} d \theta$
e. None of the others.
25. Prof. Girardi likes
a. moose
b. colored chalk
c. peanut butter
d. mathematics
e. All of the above.

Good Luck in your math fun to come!

