MARK BOX		
PROBLEM	POINTS	
0	20	
$1-7$	70	
8	10	
$\%$	100	

NAME: \qquad

PIN:

INSTRUCTIONS

- On Problem 0, fill in the blanks/boxes. As you know, if you do not make at least half of the points on Problem 0, then your score for the entire exam will be whatever you made on Problem 0.
- For multiple choice problems, circle your answer(s) on the provided chart. No need to show work.
- For all other problems, to receive credit you MUST show ALL your work and:
(1) work in a logical fashion, show all your work, indicate your reasoning;
no credit will be given for an answer that just appears;
such explanations help with partial credit
(2) if a line/box is provided, then:
- show you work BELOW the line/box
- put your answer on/in the line/box
(3) if no such line/box is provided, then box your answer.
- Upon request, you will be given as much (blank) scratch paper as you need.
- Check that your copy of the exam has all of the problems.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: electronic devices, books, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a students request, I will project my watch upon the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
- This exam covers (from Calculus by Thomas, $13^{\text {th }}$ ed., ET): §10.7-10.10 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

Signature : \qquad
0. Fill-in-the blanks/boxes.

0A. Power Series Consider the (formal) power series

$$
\begin{equation*}
h(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \tag{0-1}
\end{equation*}
$$

with radius of convergence $R \in[0, \infty]$.
(Here $x_{0} \in \mathbb{R}$ is fixed and $\left\{a_{n}\right\}_{n=0}^{\infty}$ is a fixed sequence of real numbers.)
Without any other further information on $\left\{a_{n}\right\}_{n=0}^{\infty}$, answer the following questions.
-. First let $0<R<\infty$. The largest set of x 's for which we know that the power series in (0-1) is:
(a) absolutely convergent is \qquad
(b) divergent is \qquad .

What can you say about the convergence of the power series in (0-1) when $x=x_{0}+R$ or $x=x_{0}-R$?

- Now let $R=\infty$. The largest set of x 's for which we know that the power series in (0-1) is:
(a) absolutely convergent is \qquad
(b) divergent is \qquad .
- Now let $R=0$. The largest set of x 's for which we know that the power series in (0-1) is:
(a) absolutely convergent is \qquad
(b) divergent is \qquad .
-. Now let $R>0$ and fill-in the 5 boxes.
Consider the function $y=h(x)$ defined by the power series in (0-1).
(a) The function $y=h(x)$ is always differentiable on the interval \square (make this interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

$$
\begin{equation*}
h^{\prime}(x)=\sum_{n=1}^{\infty} \square \tag{0-2}
\end{equation*}
$$

What can you say about the radius of convergence of the power series in (0-2)? \square
(b) The function $y=h(x)$ always has an antiderivative on the interval (make this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in this interval, then

$$
\int_{x=\alpha}^{x=\beta} h(x) d x=\left.\sum_{n=0}^{\infty} \square\right|_{\mathbf{x}=\alpha} ^{\mathbf{x}=\beta}
$$

0B. Taylor/Maclaurin Polynomials and Series. Fill-in the boxes.
Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=P_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
Let c_{n} be the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about x_{0}.
a. In open form (i.e., with "..." notation and without a \sum-sign)

$$
P_{N}(x)=\square
$$

b. In closed form (i.e., with a \sum-sign and without ". ." notation)

$$
P_{N}(x)=\square
$$

c. In open form (i.e., with ". .." notation and without a \sum-sign)

$$
P_{\infty}(x)=\square
$$

d. In closed form (i.e., with a \sum-sign and without ". ." notation)

$$
P_{\infty}(x)=\square
$$

e. The formula for c_{n} is

$$
c_{n}=\square
$$

f. We know that $f(x)=P_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

$$
R_{N}(x)=\square \text { for some } c \text { between } \square \text { and } \square .
$$

g. A Maclaurin series is a Taylor series with the center specifically specified as $x_{0}=\square$.

TABLE FOR YOUR ANSWERS TO MULTIPLE CHOICE PROBLEMS

- See Statement of Multiple Choice Problems for the statement of the multiple choice.
- Indicate (by circling) directly in the table below your solution to each problem.
- You may choice up to $\mathbf{2}$ answers for each problem. The scoring is as follows.
- For a problem with precisely one answer marked and the answer is correct, 10 points.
- For a problem with precisely two answers marked, one of which is correct, 4 points.
- For a problem with nothing marked (i.e., left blank) 1 point.
- All other cases, 0 points.
- Fill in the "number of solutions circled" column. (Worth a total of 1 point of extra credit.)

Your Solutions							Do Not Write Below			
							points			
Problem						$\underbrace{}_{\|$ number of solutions circled $}$	10	4	1	0
1	1a	1b	1c	1d	1 e					
2	2 a	2b	2c	2d	2 e					
3	3 a	3b	3c	3d	3 e					
4	4 a	4b	4c	4d	4 e					
5	5 a	5b	5c	5 d	5 e					
6	6 a	6b	6c	6 d	6 e					
7	7 a	7b	7c	7d	7 e					
							Extra	edit:		

8. In this problem, you must show your work. Clearly explain your thought process. Using Taylor's (BIG) Remainder Theorem, show that

$$
\sum_{n=0}^{\infty} \frac{1}{n!}=e
$$

Hint: The instruction says to use Taylor's Remainder Theorem so you cannot use the facts listed on the Commonly Used Taylor Series handout. (Indeed, the facts listed on the Commonly Used Taylor Series handout are shown by using Taylor's Remainder Theorem so think of this problem as showing one of these facts.)
Hint. Consider the function $f(x)=e^{x}$.

Statement of Multiple Choice 1-7 and
 Scratch Paper
 Not to be collected.

1. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{2}{3-x}
$$

about the center $x_{0}=0$ and state when this Taylor series is valid. Hint, by simple algebra,

$$
f(x)=\frac{2}{3-x}=\left(\frac{2}{3}\right)\left(\frac{1}{1-\frac{x}{3}}\right) .
$$

a. $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} x^{n}$, valid for $|x|<1$
b. $\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^{n}$, valid for $|x|<3$
c. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<1$
d. $\sum_{n=0}^{\infty} \frac{2}{3^{n+1}} x^{n}$, valid for $|x|<3$
e. none of these
2. Using a known (commonly used) Taylor series, find the Taylor series for

$$
f(x)=\frac{1}{(1-x)^{4}}
$$

about the center $x_{0}=0$ which is valid for $|x|<1$. Hint. Start with the Taylor series expansion

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \quad \text { valid for }|x|<1
$$

and differentiate (as many times as needed). Be careful and don't forget the chain rule:

$$
D_{x}(1-x)^{-1}=(-1)(1-x)^{-2} D_{x}(1-x)=(-1)(1-x)^{-2}(-1)=(1-x)^{-2}
$$

a. $\sum_{n=0}^{\infty} \frac{(n)(n-1)(n-2)}{6} x^{n-3}$
b. $\sum_{n=0}^{\infty}(n)(n-1)(n-2) x^{n}$
c. $\sum_{n=0}^{\infty} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+3)(n+2)(n+1)}{6} x^{n}$
e. none of these
3. Using a known (commonly used) Taylor series, evaluate $\int \tan ^{-1}\left(t^{2}\right) d t$ as a power series.
a. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+3}}{(4 n+3)}$
b. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+3}}{(2 n+1)(4 n+3)}$
c. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n+2}}{(2 n+3)}$
d. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+2}}{(2 n+1)}$
e. $C+\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n+3}}{(2 n+3)}$
4. Find the $3^{\text {rd }}$ order Taylor polynomial for $f(x)=\frac{1}{x}$ about the center $x_{0}=2$.
a. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}$
b. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{4}(x-2)^{2}-\frac{3}{8}(x-2)^{3}$
c. $\frac{1}{2}+\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}+\frac{1}{16}(x-2)^{3}$
d. $\frac{1}{2}-\frac{1}{4} x+\frac{1}{4} x^{2}-\frac{3}{8} x^{3}$
e. none of these
5. Find the Taylor series for $f(x)=x^{4}-3 x^{2}+1$ about the center $x_{0}=1$.
a. $(x-1)^{4}-3(x-1)^{2}+1$
b. $-1-2(x-1)+3(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}$
c. $-1-2(x-1)+6(x-1)^{2}+24(x-1)^{3}+24(x-1)^{4}$
d. $-1-2(x-1)+3(x-1)^{2}+4(x-1)^{3}+(x-1)^{4}+2(x-1)^{5}$
e. none of these
6. Find the Taylor series for

$$
f(x)=\frac{1}{x^{2}}
$$

about the center $x_{0}=1$.
a. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)!x^{n}$
b. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)!(x-1)^{n}$
c. $\sum_{n=0}^{\infty}(-1)^{n}(n+1)(x-1)^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n+1}(n+1)(x-1)^{n}$
e. none of these
7. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!}
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(7,9)$.
a. $\frac{\left(e^{9}\right)\left(9^{5}\right)}{5!}$
b. $\frac{\left(e^{-9}\right)\left(9^{6}\right)}{6!}$
c. $\frac{\left(e^{-7}\right)\left(9^{6}\right)}{6!}$
d. $\frac{\left(e^{-0}\right)\left(9^{6}\right)}{6!}$
e. none of these

