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NAME:

PIN:

INSTRUCTIONS
• On Problem 0, fill in the blanks. As you know, if you do not make at least half of the points on Problem

0, then your score for the entire exam will be whatever you made on Problem 0.
• For multiple choice problems, circle your answer(s) on the provided chart. No need to show work.
• For all other problems, to receive credit you MUST show ALL your work and :

(1) work in a logical fashion, show all your work, indicate your reasoning;
no credit will be given for an answer that just appears;
such explanations help with partial credit

(2) if a line/box is provided, then:
— show you work BELOW the line/box
— put your answer on/in the line/box

(3) if no such line/box is provided, then box your answer.
• Upon request, you will be given as much (blank) scratch paper as you need.
• Check that your copy of the exam has all of the problems.
• During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: elec-

tronic devices, books, and personal notes. Unauthorized materials (including cell phones) must be in a
secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring
such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you
leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. At a
students request, I will project my watch upon the projector screen.

• During this exam, do not leave your seat unless you have permission. If you have a question, raise your
hand. When you finish: put your pencil down and raise your hand.

• This exam covers (from Calculus by Thomas, 13th ed., ET): §10.1–10.6 .

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and
maintain the University of South Carolina’s Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

I understand that if it is determined that I used any unauthorized assistance or otherwise violated the
University’s Honor Code then I will receive a failing grade for this course and be referred to the academic
Dean and the Office of Academic Integrity for additional disciplinary actions.

Furthermore, I have not only read but will also follow the instructions on the exam.

Signature :

Prof. Girardi Page 1 of 9 Math 142
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0. Fill-in-the boxes. All series
∑

are understood to be
∑∞

n=1 , unless otherwise indicated.

0.1. Geometric Series. Fill in the boxes with the proper range of r ∈ R.

• The series
∑
rn converges if and only if r satisfies .

0.2. p-series. Fill in the boxes with the proper range of p ∈ R.

• The series
∑

1
np converges if and only if .

0.3. State the Integral Test for a positive-termed series
∑
an.

Let f : [1,∞)→ R be so that

• an = f (n) for each n ∈ N
• f is a function

• f is a function

• f is a function.

Then
∑
an converges if and only if converges.

0.4. State the Comparison Test for a positive-termed series
∑
an. Let N0 ∈ N (e.g., N0 might be 17).

• If when n ≥ N0 and , then
∑

an converges.

• If when n ≥ N0 and , then
∑

an diverges.

Hint: sing the song to yourself.

0.5. State the Limit Comparison Test for a positive-termed series
∑
an.

Let bn > 0 and L = limn→∞
an
bn

.

• If 0 < L <∞ , then .

Goal: cleverly pick positive bn’s so that you know what
∑

bn does (converges or diverges) and the sequence
{

an
bn

}
n
converges.

0.6. By definition, for an arbitrary series
∑
an, (fill in these 3 boxes with convergent or divergent).

•
∑
an is absolutely convergent if and only if

∑
|an| is .

•
∑
an is conditionally convergent if and only if∑

an is and
∑
|an| is .

•
∑
an is divergent if and only if

∑
an is divergent.

0.7. State the Ratio and Root Tests for arbitrary-termed series
∑
an with −∞ < an <∞.

Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ or ρ = lim
n→∞

|an|
1
n .

• If then
∑
an converges absolutely.

• If then
∑
an diverges.

• If then the test is inconclusive.

0.8. State the Alternating Series Test (AST).

If (1) un > 0 for each n ∈ N (2) limn→∞ un = (3) un un+1 for each n ∈ N ,

then
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1. Circle T if the statement is TRUE. Circle F if the statement if FALSE. To be more specific: circle T
if the statement is always true and circle F if the statement is NOT always true. Scoring: 2 pts for correct answer,
0 pts for an incorrect answer, 1 pt for a blank answer (indicated by a circled B).

On the next 3, think of the nth-term test for divergence and what if an = 1
n

T F B If limn→∞ an 6= 0, then
∑
an diverges.

T F B If
∑
an converges, then limn→∞ an = 0.

T F B If limn→∞ an = 0, then
∑
an converges.

On the next 5, think of AC vs. CC vs. Divergent. Examples from Problem 2 might be helpful.
T F B A series

∑
an is precisely one of the following:

absolutely convergent, conditionally convergent, divergent.
T F B If an ≥ 0 for all n ∈ N, then

∑
an is either absolutely convergent or divergent.

T F B If
∑
|an| converges, then

∑
an converges.

T F B If
∑

an diverges, then
∑
|an| diverges.

T F B If
∑
|an| diverges, then

∑
an diverges.

On the next 2, think of a Theorem from class and what if bn = −an.
T F B If

∑
an converges and

∑
bn converge, then

∑
(an + bn) converges.

T F B If
∑

(an + bn) converges, then
∑
an converges and

∑
bn converge.

2. Circle the behavior of the given series. The abbreviations are:

• AC stands for absolutely convergent
• CC stands for conditionally convergent

• DVG stand for divergent
• NOT stands for none of the others.

You can circle up to 1 answers for each problem. The scoring is as follows.
• For a problem with precisely one answer marked and the answer is correct, 1 points.
• All other cases, 0 points.

Series
∞∑
n=1

1

n2
AC CC DVG NOT

∞∑
n=1

(−1)n

n2
AC CC DVG NOT

∞∑
n=1

1

n
AC CC DVG NOT

∞∑
n=1

(−1)n

n
AC CC DVG NOT

∞∑
n=1

1√
n

AC CC DVG NOT

∞∑
n=1

(−1)n√
n

AC CC DVG NOT

∞∑
n=2

1

ln(n)
AC CC DVG NOT

∞∑
n=2

(−1)n

ln(n)
AC CC DVG NOT

∞∑
n=1

1

en
AC CC DVG NOT

∞∑
n=1

(−1)n

en
AC CC DVG NOT

Page 3 of 9



Spring 2016 Exam 2

3. For the following SEQUENCES:

• if the limit exists, find it

• if the limit does not exist, then say that it DNE (which is equivalent to saying it diverges).

Put your ANSWER IN the box and show your WORK BELOW the box.

3a. lim
n→∞

5n2 + 4
√
n

6n2 + 7n+ 1
=

3b. lim
n→∞

−5n8 + 4
√
n

6n3 + 7n2 + 1
=

3c. lim
n→∞

5n3 + 4
√
n

6n8 + 7n2 + 1
=
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TABLE FOR YOUR ANSWERS TO
MULTIPLE CHOICE PROBLEMS

• See Statement of Multiple Choice Problems for the statement of the multiple choice.

• Indicate (by circling) directly in the table below your solution to each problem.

• You may choice up to 2 answers for each problem. The scoring is as follows.

• For a problem with precisely one answer marked and the answer is correct, 5 points.

• For a problem with precisely two answers marked, one of which is correct, 3 points.

• For a problem with nothing marked (i.e., left blank) 1 point.

• All other cases, 0 points.

• Fill in the “number of solutions circled” column. (Worth a total of 1 point of extra credit.)

Your Solutions Do Not Write Below

points

problem

number

of

solutions

circled

5 3 1 0

4 4a 4b 4c 4d 4e

5 5a 5b 5c 5d 5e

6 6a 6b 6c 6d 6e

7 7a 7b 7c 7d 7e

Extra Credit:
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8. In this problem, you must show your work. Let

an =
3n

n!

8a. Find an expression for an+1

an
that does NOT have a fractorial sign (that is a ! sign) in it.

an+1

an
=

8b. Check the correct box and then indicate your reasoning below. SHOW ALL YOUR WORK.

Specifically specify what test(s) you are using. A correctly checked box without appropriate

explanation will receive no points.

∞∑
n=1

3n

n!

absolutely convergent

conditionally convergent

divergent
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9. Check the correct box and then indicate your reasoning below. SHOW ALL YOUR WORK.

Specifically specify what test(s) you are using. A correctly checked box without appropriate

explanation will receive no points.

∞∑
n=1

lnn√
n5

absolutely convergent

conditionally convergent

divergent
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Statement of Multiple Choice 4–7
and

Scratch Paper
Not to be collected.

4. Consider the following two series.

Series A is
∞∑
n=1

1

n

Series B is
∞∑
n=1

(−1)n

n
.

a. both series converge absolutely

b. both series diverge

c. series A converges conditionally and series B diverges

d. series A diverges and series B converges conditionally

e. None of the others.

5. Consider the formal series
∞∑
n=1

1

n (n+ 1)
(5)

and let

sN =
N∑

n=1

1

n (n+ 1)
.

Note that the partial fractions decompostion of 1
n (n+1)

is 1
n
− 1

n+1
.

a. sN = 1− 1
N+1

and the series in (5) converges to 1.

b. sN = 1 + 1
N+1

and the series in (5) converges to 1.

c. sN = 1 + 1
N

and the series in (5) converges to 1.

d. sN = 1− 1
N

and the series in (5) converges to 1.

e. None of the others.
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6. Consider the formal series
∞∑
n=2

(
2n+ 3

3n+ 2

)n

.

a. The series converges by the Root Test.

b. The series diverges by the Root Test.

c. The Root Test is inconclusive.

d. The Root Test cannot be applies.

e. None of the others.

7. The formal series
∞∑

n=17

1

n lnn

is:

a. convergent by the integral test

b. convergent by the ratio test

c. divergent by the integral test

d. divergent by the ratio test

e. None of the others.
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