1. Commonly Used Taylor Series Fill in the LAST COLUMN of the below table.

$y=f(x)$	Maclaurin series of $y=f(x)$ in open (with ". ..") form	Maclaurin series of $y=f(x)$ in closed (with \sum-sign) form	Largest set of x 's for which the Maclaurin series converges to the function.
$\frac{1}{1-x}$			
$\cos x$			
$\sin x$			
e^{x}			
$\ln (1+x)$			

2. Using a known (commonly used) Taylor series, find the Tayor series for

$$
f(x)=\frac{1}{1+2 x^{3}}
$$

about the center $x_{0}=0$.
a. $\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{3 n}$
b. $\sum_{n=0}^{\infty} 2^{n} x^{3 n}$
c. $\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n}$
d. $\sum_{n=0}^{\infty} 2^{n} x^{n}$
e. None of the others.
3. Find a power series reprsentation of

$$
f(x)=\frac{x}{16+x^{2}}
$$

and state the LARGEST interval for which it is valid.
a. $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{16^{n+1}} x^{2 n+1}$, valid precisely when $x \in(-4,4)$
b. $f(x)=\sum_{n=0}^{\infty} \frac{1}{16^{n+1}} x^{2 n+1}$, valid precisely when $x \in(-4,4)$
c. $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{16^{n+1}} x^{2 n+1}$, valid precisely when $x \in(-16,16)$
d. $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{16^{n+1}} x^{2 n+1}$, valid precisely when $x \in(-1,1)$
e. None of the others.
4. Find the $2^{\text {nd }}$ order Taylor polynomial for

$$
f(x)=\sqrt[3]{x}
$$

about the center $x_{0}=8$.
a. $2+\frac{x}{12}-\frac{x^{2}}{9\left(2^{5}\right)}$
b. $2+\frac{(x-8)}{12}+\frac{(x-8)^{2}}{9\left(2^{5}\right)}$
c. $2+\frac{(x-8)}{12}-\frac{(x-8)^{2}}{9\left(2^{5}\right)}$
d. $2+\frac{(x-8)}{12}-\frac{(x-8)^{2}}{9\left(2^{4}\right)}$
e. None of the others.
5. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 9 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n} ?$
a. 1
b. 3
c. 9
d. 81
e. None of the others.
6. Find a power series representation of the function $y=f(t)$ where

$$
f(t)=\int_{0}^{t} \frac{1}{1+x^{7}} d x
$$

and say for which values of t it is valid.
a. $\sum_{n=0}^{\infty} \frac{t^{7 n+1}}{7 n+1}$, valid for $t \in(-1,1)$
b. $\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{7 n+1}}{7 n+1}$, valid for $t \in(-1,1)$
c. $\sum_{n=1}^{\infty} \frac{t^{7 n+1}}{7 n+1}$, valid for $t \in(-1,1)$
d. $\sum_{n=1}^{\infty}(-1)^{n} \frac{t^{7 n+1}}{7 n+1}$, valid for $t \in(-1,1)$
e. None of the others.
7. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 6^{n}}(2 x-1)^{n}
$$

The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad . As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
8. Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of the function

$$
f(x)=e^{-5 x}
$$

about center $x_{0}=0$. Define the function remainder $y=R_{N}(x)$ by $R_{N}(x):=f(x)-P_{N}(x)$.

For each of $\mathbf{8 a}$ and $\mathbf{8 b}$, below the answer box, you must work in a logical fashion, indicating your reasoning.
8a. For $\left|R_{N}(x)\right|$, find a good upper bound that Taylor's Remainder Theorem guarantees is valid for each $x \in \mathbb{R}$.
Hint. In your answer, you can have N and x and c but you need to indicate what you know about c.
\square
Work:

8b. For $\left|R_{N}(x)\right|$, find a good upper bound that Taylor's Remainder Theorem guarantees is valid for each $x \in(2,3)$.
Hint. In your answer, you can have N but cannot have x nor c.
\square
Work:

