MARK BOX		
PROBLEM	POINTS	
0	37	
1	7	
2	10	
$3-5$	$15+1$	
6	15	
7	15	
$\%$	100	
$\%$		

NAME: \qquad

PIN: \qquad

INSTRUCTIONS

- On Problem 0, fill in the blanks and boxes. As you know, if you do not make at least half of the points on Problem 0, then your score for the entire exam will be whatever you made on Problem 0.
- For problems 1 and 5, circle your answer on the provided chart. You do NOT have to show your work.
- For problems 6 and 7, to receive credit you must show your work and :
(1) work in a logical fashion, show all your work, indicate your reasoning;
no credit will be given for an answer that just appears;
such explanations help with partial credit
(2) if a line/box is provided, then:
- show you work BELOW the line/box
- put your answer on/in the line/box
(3) if no such line/box is provided, then box your answer.
- Upon request, you will be given as much (blank) scratch paper as you need.
- Check that your copy of the exam has all of the problems.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: electronic devices, books, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. Please, if I forget, remind me to pull up a clock on the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
- This exam covers (from Calculus by Stewart, $6^{\text {th }}$ ed., ET): §11.2-11.7.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the instructions on the exam.

Signature : \qquad
0. Fill-in-the boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.
-. Sequences Fill in the boxes with with the proper range of $r \in \mathbb{R}$.
$\begin{array}{ll}\text { - } \lim _{n \rightarrow \infty} r^{n}=0 \text { if and only if } r \text { satisfies } \\ \text { - } \lim _{n \rightarrow \infty} r^{n}=1 \text { if and only if } r \text { satisfies } & \square .\end{array}$

- the sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ diverges to ∞ if and only if r satisfies
- the sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ diverges but does not diverge to ∞ if and only if r satisfies \square
-. State the $n^{\text {th }}$-term test for an arbitrary SERIES $\sum a_{n}$.
-. State the Alternating Series Test for an alternating series $\sum(-1)^{n} u_{n}$ where $u_{n}>0$ for each $n \in \mathbb{N}$.
If
- $\lim _{n \rightarrow \infty} u_{n}=\square$
- and
then $\sum(-1)^{n} u_{n}$ \square
-. By definition, for an arbitrary series $\sum a_{n}$, (fill in these 3 boxes with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ \square
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$
-. Geometric Series. Fill in the boxes with the proper range of $r \in \mathbb{R}$.
- The series $\sum r^{n}$ converges if and only if r satisfies
- The series $\sum r^{n}$ diverges if and only if r satisfies \square
-. p-series. Fill in the boxes with the proper range of $p \in \mathbb{R}$.
- The series $\sum \frac{1}{n^{p}}$ converges if and only if
- The series $\sum \frac{1}{n^{p}}$ diverges if and only if \square
-. State the Integral Test for a positive-termed series $\sum a_{n}$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

\square function function.

Then $\sum a_{n}$ converges if and only if \square converges.
-. State the Comparison Test for a positive-termed series $\sum a_{n}$.
Let $N_{0} \in \mathbb{N}$.

Hint: sing the song to yourself.

- State the Limit Comparison Test for a positive-termed series $\sum a_{n}$.

Let $b_{n}>0$ and $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$

-. State the Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$.
Let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad \text { or } \quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}
$$

- - If	\square
- If	\square
- If	\square
-	

then $\sum a_{n}$ converges absolutely.
then $\sum a_{n}$ diverges.
then the test is inconclusive.
-. In this Flow Chart, fill in the 3 blank boxes with: absolutely convergent, conditionally convergent, or divergent.

-. Fix $r \in \mathbb{R}$ with $r \neq 1$. For $N \geq 22$, let $s_{N}=\sum_{\mathbf{n}=\mathbf{2 2}}^{N} r^{n}$. (Note the sum starts at 22). Then s_{N} can be written as:

$$
s_{N}=\square
$$

for all $N \geq 22$. Your answer should NOT contain a ". . " nor a " \sum " sign.

1. Circle T if the statement is TRUE. Circle F if the statement if FALSE. To be more specific: circle T if the statement is always true and circle F if the statement is NOT always true.

On the next 2, think of the $n^{\text {th }}$-term test for divergence and what if $a_{n}=\frac{1}{n}$		
T	F	If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges.
T	F	If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
On the next 2, think of a Theorem from class and what if $b_{n}=-a_{n}$		
T	F	If $\sum a_{n}$ converges and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right)$ converges.
T	F	If $\sum\left(a_{n}+b_{n}\right)$ converges, then $\sum a_{n}$ converges and $\sum b_{n}$ converge.
On the next 3, think of the mutually exclusive and exhaustive possibilities for a series.		
T	F	If $\sum\left\|a_{n}\right\|$ converges, then $\sum a_{n}$ converges.
T	F	If $\sum\left\|a_{n}\right\|$ diverges, then $\sum a_{n}$ diverges.
T	F	If $\sum a_{n}$ diverges, then $\sum\left\|a_{n}\right\|$ diverges.

2. Circle the behavior of the given series. The abbreviations are:

- AC stands for absolutely convergent
- DVG stand for divergent
- CC stands for conditionally convergent
- NOT stands for none of the others.

You can circle up to $\mathbf{1}$ answers for each problem. The scoring is as follows.

- For a problem with precisely one answer marked and the answer is correct, 1 points.
- All other cases, 0 points.

Series				
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{1}{n}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$	AC	CC	DVG	NOT
$\sum_{n=2}^{\infty} \frac{1}{\ln (n)}$	AC	CC	DVG	NOT
$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{1}{e^{n}}$	AC	CC	DVG	NOT
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{e^{n}}$	AC	CC	DVG	NOT

Instructions for problems 3-5.

- Indicate (by circling) directly in the table below your solution to problems 3-5.
- You may choice up to 2 answers for each problem. The scoring is as follows.
- For a problem with precisely one answer marked and the answer is correct, 5 points.
- For a problem with precisely two answers marked, one of which is correct, 2 points.
- All other cases, 0 points.
- Fill in the "number of solutions circled" column (worth 1 pt).
- You do NOT have to show your work for problems 3-5.

Your Solutions							
PROBLEM						\# of solutions circled	points
3	3 a	3 b	3 c	3 d	3 e		
4	4 a	4 b	4 c	4 d	4 e		
5	5 a	5 b	5 c	5 d	5 e		

3. By using the Limit Comparison Test, one can show that the formal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n}{\sqrt{(n+1)(n+2)(n+3)(n+4)(n+5)}} \tag{3}
\end{equation*}
$$

is:
a. convergent by comparing the series in (3) to the p-series $\sum\left(\frac{1}{n}\right)^{p}$ with $p=5 / 2$.
b. convergent by comparing the series in (3) to the p-series $\sum\left(\frac{1}{n}\right)^{p}$ with $p=3 / 2$.
c. divergent by comparing the series in (3) to the p-series $\sum\left(\frac{1}{n}\right)^{p}$ with $p=5 / 2$.
d. divergent by comparing the series in (3) to the p-series $\sum\left(\frac{1}{n}\right)^{p}$ with $p=3 / 2$.
e. none of the others
4. The formal series

$$
\sum_{n=17}^{\infty} \frac{1}{n \ln n}
$$

is:
a. convergent by the integral test
b. convergent by the ratio test
c. divergent by the integral test
d. divergent by the ratio test
e. none of the others
5. Consider the formal series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \tag{5}
\end{equation*}
$$

and let

$$
s_{N}=\sum_{n=1}^{N} \frac{1}{n(n+1)} .
$$

Note that the partial fractions decompostion of $\frac{1}{n(n+1)}$ is $\frac{1}{n}-\frac{1}{n+1}$.
a. $s_{N}=1-\frac{1}{N+1}$ and the series in (5) converges to 1 .
b. $s_{N}=1+\frac{1}{N+1}$ and the series in (5) converges to 1 .
c. $s_{N}=1+\frac{1}{N}$ and the series in (5) converges to 1 .
d. $s_{N}=1-\frac{1}{N} \quad$ and the series in (5) converges to 1 .
e. none of the others
6. In this problem, you must show your work. Let

$$
a_{n}=\frac{n!}{(2 n)!}
$$

6a. Find an expression for $\frac{a_{n+1}}{a_{n}}$ that does NOT have a fractorial sign (that is a ! sign) in it.
\square

6b. Check the correct box and then indicate your reasoning below. SHOW ALL YOUR WORK. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

	\square	absolutely convergent
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n)!}$	\square	conditionally convergent
	\square	divergent

7. Check the correct box and then indicate your reasoning below. SHOW ALL YOUR WORK. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n^{3}}} \quad \square$ conditionally convergent

divergent
