## HAND IN PART

| MARK BOX |  |  |
| :---: | :--- | :--- |
| PROBLEM | POINTS <br> POSSIBLE | YOUR <br> SCORE |
| $1-25$ | 100 |  |

NAME:

PIN:

## INSTRUCTIONS

- The mark box above indicates the problems along with their points.

Check that your copy of the exam has all of the problems.

- This exam comes in two parts.
(1) HAND IN PART. Hand in only this part, which includes a table for indicating your solutions to the multiple choice problems.
(2) STATEMENT OF MULTIPLE CHOICE PROBLEMS part. Do not hand in this part. You can take this part home to learn from and to check your answers once the solutions are posted.
- Upon request, you will be given as much (blank) scratch paper as you need.
- During the exam, the use of unauthorized materials is prohibited. Unauthorized materials include: electronic devices, books, and personal notes. Unauthorized materials (including cell phones) must be in a secured (e.g. zipped up, snapped closed) bag placed completely under your desk or, if you did not bring such a bag, given to Prof. Girardi to hold for you during the exam (and they will be returned when you leave the exam). This means no electronic devices (such as cell phones) allowed in your pockets. Please, if I forget, remind me to pull up a clock on the projector screen.
- During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
- This exam covers (from Calculus by Stewart, $6{ }^{\text {th }}$ ed., ET):
$\S 7.1-7.5,7.8,11.1-11.11,6.1-6.3,10.3-10.4$.


## Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.
Furthermore, I have not only read but will also follow the above Instructions.

Signature: $\qquad$

- Indicate (by circling) directly in the table below your solution to each problem.
- You may choice up to 2 answers for each problem. The scoring is as follows. For a problem with precisely one answer marked and the answer is correct, 4 points. For a problem with precisely two answers marked, one of which is correct, 1 points. All other cases, 0 points.
- Fill in the "number of solutions circled" column.

| TABLE FOR YOUR ANSWERS |  |  |  |  |  |  | Do Not Write Below <br> points |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |
| PROBLEM |  |  |  |  |  | number of <br> solutions <br> circled | 4 | 1 | 0 |
| 1 | 1 a | 1 b | 1 c | 1 d | 1 e |  |  |  |  |
| 2 | 2a | 2b | 2c | 2d | 2 e |  |  |  |  |
| 3 | 3 a | 3b | 3 c | 3d | 3 e |  |  |  |  |
| 4 | 4a | 4b | 4c | 4d | 4 e |  |  |  |  |
| 5 | 5 a | 5b | 5c | 5d | 5 e |  |  |  |  |
| 6 | 6a | 6 b | 6 c | 6d | 6 e |  |  |  |  |
| 7 | 7 a | 7b | 7 c | 7 d | 7 e |  |  |  |  |
| 8 | 8 a | 8b | 8 c | 8d | 8 e |  |  |  |  |
| 9 | 9a | 9b | 9c | 9d | 9 e |  |  |  |  |
| 10 | 10a | 10b | 10c | 10d | 10 e |  |  |  |  |
| 11 | 11a | 11b | 11c | 11d | 11 e |  |  |  |  |
| 12 | 12a | 12b | 12c | 12d | 12 e |  |  |  |  |
| 13 | 13a | 13b | 13c | 13d | 13 e |  |  |  |  |
| 14 | 14a | 14b | 14 c | 14d | 14 e |  |  |  |  |
| 15 | 15a | 15b | 15 c | 15d | 15 e |  |  |  |  |
| 16 | 16a | 16b | 16c | 16d | 16 e |  |  |  |  |
| 17 | 17a | 17b | 17c | 17d | 17 e |  |  |  |  |
| 18 | 18a | 18b | 18c | 18d | 18 e |  |  |  |  |
| 19 | 19a | 19b | 19c | 19d | 19 e |  |  |  |  |
| 20 | 20a | 20b | 20c | 20d | 20 e |  |  |  |  |
| 21 | 21a | 21b | 21 c | 21d | 21 e |  |  |  |  |
| 22 | 22a | 22b | 22c | 22d | 22 e |  |  |  |  |
| 23 | 23a | 23b | 23c | 23d | 23 e |  |  |  |  |
| 24 | 24a | 24 b | 24 c | 24d | 24 e |  |  |  |  |
| 25 | 25a | 25b | 25 c | 25d | 25 e |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

## STATEMENT OF MULTIPLE CHOICE PROBLEMS

- Hint for a typical (i.e. not improper) definite integral problems $\int_{a}^{b} f(x) d x$. First do the indefinite integral, say you get $\int f(x) d x=F(x)+C$. To check if you did this part correctly, you can use the Fundemental Theorem of Calculus (i.e. $F^{\prime}(x)$ should be $f(x)$ ). Once you are confident that your indefinite integral is correct, use the indefinite integral to find the definite integral.
- Hint: $\quad \ln b-\ln a=\ln \left(\frac{b}{a}\right) \quad$ and $\ln \left(a^{r}\right)=r \ln a \quad$ if $a, b>0$ and $r \in \mathbb{R}$.

1. Evaluate the integral

$$
\int_{x=0}^{x=1} \frac{1}{x^{2}+1} d x
$$

a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. $\ln \sqrt{3}$
d. $\ln 3$
e. None of the others.
2. Evaluate the integral

$$
\int_{x=0}^{x=1} \frac{x}{x^{2}+1} d x .
$$

a. $\frac{\pi}{4}$
b. $\frac{\pi}{2}$
c. $\ln \sqrt{3}$
d. $\ln 3$
e. None of the others.
3. Evaluate the integral

$$
\int_{x=0}^{x=e} \ln x d x
$$

a. $\frac{1}{e}-1$
b. $1-\frac{1}{e}$
c. $2 e-1$
d. 1
e. None of the others.
4. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{3} x \sin ^{4} x d x
$$

a. $\frac{4}{45}$
b. $\frac{14}{45}$
c. $\frac{2}{35}$
d. $\frac{12}{35}$
e. None of the others.
5. Evaluate the integral

$$
\int_{x=2}^{x=3} \frac{4 x^{2}+13 x-9}{x^{3}+2 x^{2}-3 x} d x
$$

a. $\ln \frac{45}{4}$
b. $\ln \frac{45}{12}$
c. $\ln \frac{15}{4}$
d. $\ln \frac{81}{10}$
e. None of the others.
6. Evaluate the integral

$$
\int_{x=0}^{x=1} \frac{1}{\sqrt{x^{2}+8 x+25}} d x
$$

Hint: $x^{2}+8 x+25=(x+4)^{2}+9$.
a. $\ln \frac{39}{29}$
b. $\ln \frac{\sqrt{34}+5}{9}$
c. $\frac{1}{3} \ln \frac{39}{29}$
d. $\frac{1}{3} \ln \frac{\sqrt{34}+5}{9}$
e. None of the others.
7. Evaluate the integral

$$
\int_{x=0}^{x=\frac{\pi}{2}} \cos ^{4} x d x
$$

a. $\frac{16 \pi-2}{32}$
b. $\frac{16 \pi+2}{32}$
c. $\frac{6 \pi-1}{32}$
d. $\frac{6 \pi+1}{32}$
e. None of the others.
8. Evaluate the integral

$$
\int_{x=0}^{x=\frac{3 \pi}{2}} e^{x} \cos x d x
$$

a. $\frac{1+e^{3 \pi / 2}}{2}$
b. $\frac{1-e^{3 \pi / 2}}{2}$
c. $\frac{-1+e^{3 \pi / 2}}{2}$
d. $\frac{-1-e^{3 \pi / 2}}{2}$
e. None of the others.
9. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{2 / 3}} d x
$$

a. 0
b. $\frac{2}{3}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
10. Evaluate the integral

$$
\int_{x=-1}^{x=1} \frac{1}{x^{3}} d x
$$

a. 0
b. $\frac{1}{4}$
c. diverges to infinity
d. does not exist but also does not diverge to infinity
e. None of the others.
11. Find
$\lim _{n \rightarrow \infty} \frac{\sqrt{25 n^{8}+5 n^{7}-n^{2}+1}}{3 n^{4}+5 n^{2}-n-2}$.
a. 0
b. $\frac{25}{3}$
c. $\frac{5}{3}$
d. $\infty$
e. None of the others.
12. For what value $r \in \mathbb{R}$ does

$$
\sum_{n=2}^{\infty} r^{n}=\frac{1}{4} ?
$$

a. $\frac{1}{3}$
b. $\frac{1}{4}$
c. $\frac{1}{5}$
d. $\frac{\sqrt{17}-1}{8}$
e. None of the others.
13. The formal series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{(n+2)(n+7)}}
$$

a. is absolutely convergent, as can be shown by the limit comparison test (LCT) with $b_{n}=\frac{1}{n^{2}}$.
b. is conditionally convergent as can by shown by using only the alternating series test (AST) and not other tests.
c. converges conditionally as can be shown by using the LCT with $b_{n}=\frac{1}{n}$ as well as the AST.
d. diverges.
e. None of the others.
14. The formal series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}
$$

a. converges, as can be shown by the limit comparison test using a p-series.
b. diverges, as can be shown by the limit comparison test using a p-series.
c. converges, as can be shown by the integral test.
d. diverges, as can be shown by the integral test.
e. None of the others.
15. Consider the formal series

$$
\sum_{n=2}^{\infty}\left(\frac{2 n+3}{3 n+2}\right)^{n}
$$

a. The series converges by the Root Test.
b. The series diverges by the Root Test.
c. The Root Test is inconclusive.
d. The Root Test cannot be applies.
e. None of the others.
16. Let $c$ be a natural number (i.e., $c \in\{1,2,3,4, \ldots\}$ ). The series

$$
\sum_{n=1}^{\infty} \frac{(n!)^{6}}{(c n)!}
$$

a. converges when $c<6$ and diverges when $c \geq 6$
b. converges when $c \leq 6$ and diverges when $c>6$
c. diverges when $c<6$ and converges when $c \geq 6$
d. diverges when $c \leq 6$ and converges when $c>6$
e. None of the others.
17. What is the LARGEST set for which the formal power series

$$
\sum_{n=17}^{\infty} \frac{x^{n}}{n!}
$$

is convergent (either absolutely or conditionally, so, in other words, its interval of convergence)?
a. $\{0\}$
b. $(-\infty,+\infty)$
c. $[-1,1)$
d. $(-1,1]$
e. None of the others.
18. Using a known (commonly used) Taylor series, find the Tayor series about the center $x_{0}=0$ for

$$
f(x)=\frac{1}{1-2 x^{3}} .
$$

a. $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
b. $\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n}$
c. $\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}$
d. $\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{3 n}$
e. None of the others.
19. Using a known (commonly used) Taylor series, find the Tayor series about the center $x_{0}=1$ for

$$
f(x)=\frac{1}{3-2 x} .
$$

a. $\sum_{n=0}^{\infty} 2^{n}(x-1)^{n}$
b. $\sum_{n=0}^{\infty}(-1)^{n} 2^{n}(x-1)^{n}$
c. $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{3}\right) 2^{n}(x-1)^{n}$
d. $\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{2}{3}\right)^{n}(x-1)^{n}$
e. None of the others.
20. Find the $3^{\text {rd }}$ order Taylor polynomial for $f(x)=\frac{1}{x}$ about the center $x_{0}=2$.
a. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}-\frac{1}{16}(x-2)^{3}$
b. $\frac{1}{2}-\frac{1}{4}(x-2)+\frac{1}{4}(x-2)^{2}-\frac{3}{8}(x-2)^{3}$
c. $\frac{1}{2}+\frac{1}{4}(x-2)+\frac{1}{8}(x-2)^{2}+\frac{1}{16}(x-2)^{3}$
d. $\frac{1}{2}-\frac{1}{4} x+\frac{1}{4} x^{2}-\frac{3}{8} x^{3}$
e. None of the others.
21. Consider the function

$$
f(x)=e^{-x}
$$

The $5^{\text {th }}$ order Taylor polynomial of $y=f(x)$ about the center $x_{0}=0$ is

$$
P_{5}(x)=\sum_{n=0}^{5} \frac{(-x)^{n}}{n!}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{x^{5}}{5!} .
$$

The $5^{\text {th }}$ order Remainder term $R_{5}(x)$ is defined by $R_{5}(x)=f(x)-P_{5}(x)$ and so $e^{-x} \approx P_{5}(x)$ where the approximation is within an error of $\left|R_{5}(x)\right|$. Using Taylor's (BIG) Theorem, find a good upper bound for $\left|R_{5}(x)\right|$ that is valid for each $x \in(-1,3)$.
a. $\frac{e\left(3^{5}\right)}{5!}$
b. $\frac{\left(3^{5}\right)}{\left(e^{3}\right)(5!)}$
c. $\frac{e\left(3^{6}\right)}{6!}$
d. $\frac{\left(3^{6}\right)}{\left(e^{3}\right)(6!)}$
e. None of the others.
22. Express the polar equation

$$
r=2 \sin \theta
$$

in Cartesion equations.
a. $x^{2}+(y-2)^{2}=2$
b. $x^{2}+(y-1)^{2}=1$
c. $(x-1)^{2}+y^{2}=1$
d. $(x-2)^{2}+y^{2}=2$
e. None of the others.
23. Express the area enclosed by $r=5-5 \sin \theta$ as an integral.
a. $\frac{1}{2} \int_{0}^{2 \pi}[5-5 \sin \theta]^{2} d \theta$
b. $\int_{0}^{2 \pi}[5-5 \sin \theta]^{2} d \theta$
c. $\frac{1}{2} \int_{0}^{2 \pi}[5-5 \sin \theta] d \theta$
d. $\frac{1}{2} \int_{0}^{2 \pi}\left[5^{2}-5^{2} \sin ^{2} \theta\right] d \theta$
e. None of the others.
24. Let $V$ be the solid of revolution obtained by revolving, about the $x$-axis, the region bounded by

$$
\begin{aligned}
& y=x \\
& y=x^{2}
\end{aligned}
$$

between $x=0$ and $x=1$. Using the shell method express the volume of $V$ as an integral.
a. $2 \pi \int_{x=0}^{x=1}(y-\sqrt{y}) d y$
b. $2 \pi \int_{x=0}^{x=1}(\sqrt{y}-y) d y$
c. $2 \pi \int_{x=0}^{x=1}(y)(y-\sqrt{y}) d y$
d. $2 \pi \int_{x=0}^{x=1}(y)(\sqrt{y}-y) d y$
e. None of the others.
25. What is your favorite number?
a. 17
b. 17
c. 17
d. 17
e. 17

Thanks for a wonderful semester. Good Luck in Math 241 and 242.

