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Prof. Girardi Math 142 Spring 2014 04.17.2014 Exam 3
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your
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0C 10
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Total for 0 39

Total for 1–10 61

% 100

NAME: solution key

PIN:

INSTRUCTIONS

(1) The mark box above indicates the problems along with their points.
Check that your copy of the exam has all of the problems.

(2) You may not use an electronic device, a calculator, books, personal notes.
(3) As you know, if you do not make at least half of the points on Problem 0, then your score for the

entire exam will be whatever you made on Problem 0.
(4) Hand in the HAND IN PART. You can take the STATEMENT OF MULTIPLE CHOICE PROB-

LEMS part home with you (so you can check your answers once the solutions are posted).
(5) During this exam, do not leave your seat unless you have permission. If you have a question, raise

your hand. When you finish: put your pencil down and raise your hand.
(6) This exam covers (from Calculus by Stewart, 6th ed., ET): §11.8 – 11.11, 6.1 – 6.3 .
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0A.Power Series Condsider a (formal) power series

h(x) =
∞∑

n=0

an (x− x0)n , (1)

with radius of convergence R ∈ [0,∞]. (Here x0 ∈ R is fixed and {an}∞n=0 is a fixed sequence of real numbers.)

•. For the next 4 questions, circle one and only one choice.
Abbreviations: AC for absolutely convergent, CC for conditionally convergent, and DV for divergent.

(1) For x = x0, the power series h(x) in (1)
a.© is always AC b. is always CC c. is always DV
d. can do anything, i.e., there are examples showing that it can be AC, CC, or DV.

(2) For x ∈ R such that |x− x0| < R, the power series h(x) in (1)
a.© is always AC b. is always CC c. is always DV
d. can do anything, i.e., there are examples showing that it can be AC, CC, or DV.

(3) For x ∈ R such that |x− x0| > R the power series h(x) in (1)
a. is always AC b. is always CC c.© is always DV
d. can do anything, i.e., there are examples showing that it can be AC, CC, or DV.

(4) If R > 0, then for the endpoints x = x0 ±R, the power series h(x) in (1)
a. is always AC b. is always CC c. is always DV
d.© can do anything, i.e., there are examples showing that it can be AC, CC, or DV.

•. For the next 2 problems, let R > 0 and fill-in the boxes. Consider the function y = h(x) defined by the
power series in (1).

(1) The function y = h(x) is always differentiable on the interval (x0 −R, x0 + R) (make this

interval as large as it can be, but still keeping the statement true). Furthermore, on this interval

h′(x) =
∞∑

n=0

n an (x− x0)n−1 . (2)

What can you say about the radius of convergence of the power series in (2)? It’s the same R .

(2) The function y = h(x) always has an antiderivative on the interval (x0 −R, x0 + R) (make

this interval as large as it can be, but still keeping the statement true). Futhermore, if α and β are in
this interval, then∫ x=β

x=α
h(x) dx =

∞∑
n=0

an

n + 1
(x− x0)n+1

∣∣∣∣∣
x=β

x=α

.
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0B.Taylor/Maclaurin Polynomials and Series. Fill-in the boxes.

Let y = f(x) be a function with derivatives of all orders in an interval I containing x0.

Let y = PN (x) be the N th-order Taylor polynomial of y = f(x) about x0.

Let y = RN (x) be the N th-order Taylor remainder of y = f(x) about x0.

Let y = P∞(x) be the Taylor series of y = f(x) about x0.

Let cn be the nth Taylor coefficient of y = f(x) about x0.

a. The formula for cn is

cn = f (n)(x0)
n!

b. In open form (i.e., with . . . and without a
∑

-sign)

PN (x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 +

f (3)(x0)
3!

(x− x0)3 + · · ·+ f (N)(x0)
N !

(x− x0)N

c. In closed form (i.e., with a
∑

-sign and without . . . )

PN (x) =
N∑

n=0

f (n)(x0)
n!

(x− x0)n

d. In open form (i.e., with . . . and without a
∑

-sign)

P∞(x) = f(x0) + f ′(x0)(x− x0) +
f (2)(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n + . . .

e. In closed form (i.e., with a
∑

-sign and without . . . )

P∞(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n

f. We know that f(x) = PN (x) + RN (x). Taylor’s BIG Theorem tells us that, for each x ∈ I,

RN (x) = f (N+1)(c)
(N + 1)!

(x− x0)(N+1) for some c between x and x0 .

g. A Maclaurin series is a Taylor series with the center specifically specified as x0 = 0 .
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0C. Area and Volume of Revolutions. Let’s start with some region R in the (2 dimensional) xy-plane
and revolve R around an axis of revolution to generate a (3 dimensional) solid of revolution S. Next we
want to find the area of R as well as the volume of S.

• In parts a, fill in the boxes with: x or y.
• In parts b, c, and d, fill in the boxes with a formula involving some of:

2 , π , radius , base , radiusbig , radiuslittle , average radius , height , and/or thickness .

I. Area via Riemann Sums. Let’s find the area of R by forming typical rectangles.
a. We first partition either the x –axis or the y –axis. (We can pick either.)
�. Next, using the partition, we form typical rectangles. Then we find the area of each typical rectangle.
b. If we partition the z-axis, where z is either x or y, the ∆z = base of a typical rectangle.

c. The area of a typical rectangle is (height) (base) .

I. Disk/Washer Method. Let’s find the volume of the solid of revolution S using the disk/washer method.
a. If the axis of revolution is:

• the x-axis, or parallel to the x-axis, then we partition the x –axis.

• the y-axis, or parallel to the y-axis, then we partition the y –axis.

�. Next, using the partition, we form typical disk/washer’s. Then we find the volume of each typical disk/washer.

b. If we partition the z-axis, where z is either x or y, the ∆z = height of a tyical disk/washer.
c. If we use the disk method, then the volume of a typical disk is:

π (radius)2 (height) .

d. If we use the washer method, then the volume of a typical washer is: (either form is fine)

π (radiusbig)2 (height) − π (radiuslittle)2 (height) or= π
[
(radiusbig)2 − (radiuslittle)2

]
(height) .

I. Shell Method. Let’s find the volume of this solid of revolution S using the shell method.
a. If the axis of revolution is:

• the x-axis, or parallel to the x-axis, then we partition the y –axis.

• the y-axis, or parallel to the y-axis, then we partition the x –axis.

�. Next, using the partition, we form typical shells. Then we find the volume of each typical shell.
b. If we partition the z-axis, where z is either x or y, the ∆z = thickness of a typical shell.

Also acceptable is ∆z = radiusbig − radiuslittle.

c. The volume of a typical shell is: (either form is fine)

2π (average radius) (height) (thickness) or= 2π (radius) (height) (thickness)

.
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0D.Commonly Used Taylor Series Fill in the 12 below blanks boxes with the choices a – `.
You may use a choice more then once or not at all.

The 12 blank boxes.

• A power series expansion for y = cos x is d and is valid precisely when g .

• A power series expansion for y = sinx is e and is valid precisely when g .

• A power series expansion for y = ex is b and is valid precisely when g .

• A power series expansion for y = 1
1−x is a and is valid precisely when h .

• A power series expansion for y = ln (1 + x) is c and is valid precisely when j .

• A power series expansion for y = tan−1 x is f and is valid precisely when i .

The choices a-l for above 12 blank boxes.

a.
∞∑

n=0

xn d.
∞∑

n=0

(−1)n x2n

(2n)!
g. x ∈ R j. (−1, 1]

b.
∞∑

n=0

xn

n!
e.

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
h. (−1, 1) k. [−1, 1)

c.
∞∑

n=1

(−1)n+1 xn

n
f.

∞∑
n=0

(−1)n x2n+1

2n + 1
i. [−1, 1] `. none of the others
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TABLE FOR YOUR ANSWERS TO MULTIPLE CHOICE
PROBLEMS

Instructions.

• Indicate (by circling) directly in the table below your solution to each problem.
• You may choice up to 3 answers for each problem. The scoring is as follows.

• For a problem with precisely one answer marked and the answer is correct, 6 points.
• For a problem with precisely two answers marked, one of which is correct, 3 points.
• For a problem with precisely three answers marked, one of which is correct, 1 point.
• All other cases, 0 points.

• Turn in this Hand In Part of the test.
• As for the Statement of Mulitple Choice Problem of the exam, note the following.

– Do NOT hand it in. Take it home with you.
– Use the back blank sides for scratch paper.

• Fill in the “number of solutions circled” column. (Worth 1 point)

Your Solutions

problem # of solutions circled points

1 1a 1b 1c© 1d 1e

2 2a 2b 2c 2d© 2e

3 3a 3b© 3c 3d 3e

4 4a 4b© 4c 4d 4e

5 5a 5b 5c© 5d 5e

6 6a 6b 6c© 6d 6e

7 7a 7b 7c 7d© 7e

8 8a 8b© 8c 8d 8e

9 9a 9b 9c© 9d 9e

10 10a 10b 10c 10d© 10e

total point
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STATEMENT OF MULTIPLE CHOICE PROBLEMS

1. Suppose that the power series
∑∞

n=1 cn(x− 10)n has interval of convergence (1, 19) What is the interval of
convergence of the power series

∑∞
n=1 cnx2n?

a. [9, 19] b. [−3, 3] c. (−3, 3) d. (−81, 81) e. none of the others.

2. Find a power series representation for f(x) = ln (10− x). Hint: ln (ab) = ln a + ln b.

a.
∞∑

n=0

xn

n10n
b.

∞∑
n=1

10xn

nn
c. ln 10−

∞∑
n=1

xn

10n
d. ln 10−

∞∑
n=1

xn

n 10n
e. none of the others.

3. Suppose that the interval of convergence of the series
∑∞

n=1 cn(x− x0)n is (x0 −R, x0 + R]. What can be
said about the series at x0 + R?
a. It must be absolutely convergent. b. It must be conditionally convergent.
c. It must be divergent. d. Nothing can be said. e. none of the others.
This was taken from our homework for §11.8. Solution is posted on our homework page.
Problem source is Anton, et. al., 8th ed., §10.8 # 63.

4. Find the 4th order Maclaurin polynonial for f(x) = 1
(x+1)3

.
a.−3x+6x2−10x3+15x4 b. 1−3x+6x2−10x3+15x4 c. 1−3(x+1)+6(x+1)2−10(x+1)3+15(x+1)4

d. 1− 3x + 12x2 − 30x3 + 360x4 e. none of the others.

5. Consider the function f(x) = ex over the interval (–1, 3). The 4th order Taylor polynomial of y = f(x)
about the center x0 = 0 is

P4(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
=

4∑
n=0

xn

n!
.

The 4th order Remainder term R4(x) is defined by R4(x) = f(x) − P4(x) and so ex ≈ P4(x) where the
approximation is within an error of |R4(x)|. Using Taylor’s (BIG) Theorem, find a good upper bound for
|R4(x)| that is valid for each x ∈ (–1, 3).

a. (e3)(34)
4! b. (e−1)(34)

4! c. (e3)(35)
5! d. (e−1)(35)

5! e. none of the others.

More Problems On Next Page
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6. Express the area of the region enclosed by y = x2 and y = 4x− x2 as an integral.

a.
∫ 4
0

[(
4x− x2

)
− x2

]
dx b.

∫ 4
0

[
x2 −

(
4x− x2

)]
dx c.

∫ 2
0

[(
4x− x2

)
− x2

]
dx

d.
∫ 2
0

[
x2 −

(
4x− x2

)]
dx e. none of the others.

Problem Source: § 6.1 Exercise # 12.

7. Let R be the region bounded by the curves

y = 1− x2 and y = 0 .

Express as an integral the volume of the solid generated by revolving R about the x-axis.

a. π
∫ 1
0

√
1− y dy b. 2π

∫ 1
0 y

√
1− y dy c. π

∫ 1
0 (1− x2)2 dx d. π

∫ 1
−1(1− x2)2 dx

e. none of the others.
Problem Source: § 6.2 Exercise # 2.

8. Let R be the region bounded by the curves

y =
x2

4
and y = 5− x2 .

Express as integral(s) the volume of the solid generated by revolving R about the x-axis.

a. π
∫ 2
−2

[(
5− x2

)
−

(
x2

4

)]2
dx b. π

∫ 2
−2

[(
5− x2

)2 −
(

x2

4

)2
]

dx c. 2π
∫ 5
0 2y

√
5− y dy

d. 2π
∫ 1
0 y

√
4y dy + 2π

∫ 1
0 y

√
5− y dy e. none of the others.

Problem Source: § 6.2 Exercise # 8.

9. Let R be the region bounded by the curves

y =
1
x

and y = 0 and x = 1 and x = 2 .

Express as integral(s) the volume of the solid generated by revolving R about the y-axis.

a. 2π
∫ 2
1

1
x dx b. 2π

∫ 2
1 x dx c. 2π

∫ 2
1 1 dx d. π

∫ 1
0

[(
1
y

)2
− (1)2

]
dy

e. none of the others.
Problem Source: § 6.3 Exercise # 3.

10. Let R be the region bounded by the curves

y = x and y = 4x− x2 .

Express as integral(s) the volume of the solid generated by revolving R about the line x = 7.

a. 2π
∫ 3
0 x

[
x−

(
4x− x2

)]
dx b. 2π

∫ 3
0 x

[(
4x− x2

)
− x

]
dx

c. 2π
∫ 3
0 (7− x)

[
x−

(
4x− x2

)]
dx d. 2π

∫ 3
0 (7− x)

[(
4x− x2

)
− x

]
dx

e. none of the others.
Problem Source: § 6.3 Exercise # 22.

8


