HAND IN PART

Prof. Girar		Math 142		Spring 2013	03.26.2013	Exam 2
MARK BOX			NAME:			
PRoblem	Points					
0	30					
1	10					
2	10					
3	10		PIN:			
4	10					
5-10	30					
\%	100					

INSTRUCTIONS

(1) The mark box above indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(2) You may not use an electronic device, a calculator, books, personal notes.
(3) On Problem 0, fill in the blanks. As you were warned, if you do not make at least half of the points on Problem 0, then your score for the entire exam will be whatever you made on Problem 0.
(4) For Problems 1-4, to receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning;
no credit will be given for an answer that just appears;
such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer.
(5) Problems 5-10 are multiple choice.
- First, indicate (to yourself) your answers directly on the STATEMENT OF MULTIPLE CHOICE PROBLEMS part.
- Once finished with the multiple choice problems, go back to the HAND IN PART and indicate your answers on the table provided.
- Hand in the HAND IN PART. You can take the STATEMENT OF MULTIPLE CHOICE PROBLEMS part home with you (so you can check your answers once the solutions are posted).
(6) During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: put your pencil down and raise your hand.
(7) This exam covers (from Calculus by Stewart, $6^{\text {th }}$ ed., ET):
§ 11.2 - 11.8 .

0. Fill-in-the blanks. All series \sum are understood to be $\sum_{n=1}^{\infty}$, unless otherwise indicated.

0a. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .

0b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$

- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
0c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
0d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .
Then $\sum a_{n}$ converges if and only if \qquad converges.
0e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$. (Fill in the blanks with a_{n} and/or b_{n}.)
- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and \sum \qquad converge, then \sum \qquad converge.
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and \sum \qquad diverge, then \sum \qquad diverge.

Of. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .
0g. Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$.
Let $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$.

- If ρ \qquad then $\sum a_{n}$ converges absolutely.
- If ρ \qquad then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.
0h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If
- $a_{n} \ldots a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad
$\mathbf{0 i}$. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad

0k. Circle T if the statement is TRUE. Circle F if the statement if FALSE.
T
F
If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

T
F If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges

T F If $S_{N}=\sum_{n=1}^{N} r^{n}$, then $S_{N}=\frac{r-r^{N+1}}{1-r}$, for when $r \neq 1$ since we don't like to divide by zero.

1. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
$\sum_{n=4}^{\infty} \frac{1}{n^{1.001}}$ \square conditionally convergent
\square divergent
2. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3 n^{3}+2 n^{2}}$ \square conditionally convergent
\square divergent
3. Let

$$
a_{n}=\frac{n!}{(2 n-1)!}
$$

3a. Find an expression for $\frac{a_{n+1}}{a_{n}}$ that does NOT have a fractorial sign (that is a ! sign) in it.

$$
\frac{a_{n+1}}{a_{n}}=
$$

3b. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

absolutely convergent
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n-1)!}$

conditionally convergent
\square divergent
4. Consider the formal power series

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{n}}
$$

Hint 1: $\frac{x^{n}}{(\ln n)^{n}}=\left[\frac{x}{\ln n}\right]^{n}$ so would you rather use the root test or the ratio test?
Hint 2: $\ln \left(a^{r}\right)=r \ln (a)$ but $(\ln (a))^{r} \neq r \ln (a)$
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad . As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.

TABLE FOR YOUR ANSWERS TO MULTIPLE CHOICE
 PROBLEMS 5-10

Instructions.

- Indicate (by circling) your solution to each problem.
- You may choice up to 3 answers for each problem. The scoring is as follows. For a problem with precisely one answer marked and the answer is correct, 5 points. For a problem with precisely two answers marked, one of which is correct, 3 points. For a problem with precisely three answers marked, one of which is correct, 1 point. All other cases, 0 points.

Your Solutions							
PROBLEM					points		
5	5 a	5 b	5 c	5 d	5 e		
6	6 a	6 b	6 c	6 d	6 e		
7	7 a	7 b	7 c	7 d	7 e		
8	9 a	8 b	8 c	8 d	8 e		
9	9 b	9 c	9 d	9 e			
10	10 a	10 b	10 c	10 d	10 e		

STATEMENT OF MULTIPLE CHOICE PROBLEMS

Instructions.

- Indicate (by circling) your solution to each problem on the Hand In Part of the exam.
- You may choice up to 3 answers for each problem. The scoring is as follows. For a problem with precisely one answer marked and the answer is correct, 5 points. For a problem with precisely two answers marked, one of which is correct, 3 points. For a problem with precisely three answers marked, one of which is correct, 1 point. All other cases, 0 points.

5. Evaluate

$$
\sum_{n=17}^{\infty} 5 \frac{(-2)^{n}}{3^{2 n+1}}
$$

a. $\left(\frac{7}{11}\right)\left(\frac{5}{3}\right)\left(\frac{-2}{9}\right)^{18}$
b. $\left(\frac{9}{11}\right)\left(\frac{-2}{9}\right)^{17}$
c. $\left(\frac{7}{11}\right)\left(\frac{5}{3}\right)\left(\frac{-2}{9}\right)^{17}$
d. $\left(\frac{9}{11}\right)\left(\frac{5}{3}\right)\left(\frac{-2}{9}\right)^{17}$
e. None of these
6. Evaluate

$$
\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}
$$

Hint: Telescoping Series, use PFD.
a. 2
b. $\frac{1}{2}$
c. 1
d. 4
e. None of these
7. Consider the following two series.

$$
\begin{aligned}
\text { Series A is } & \sum_{n=1}^{\infty} \frac{1}{n} \\
\text { Series B is } & \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} .
\end{aligned}
$$

a. both series converge absolutely b. both series diverge
c. series A converges conditionally and series B diverges
d. series A diverges and series B converges conditionally
e. none of these
8. Consider the formal seris $\sum_{n=1}^{\infty} a_{n}$ where

$$
a_{n}=(-1)^{n} \frac{(n+1)!}{(2 n)!}
$$

and let

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

a. $\sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=\frac{1}{2}$. b. $\sum_{n=1}^{\infty} a_{n}$ converges absolutely because $\rho=0$. c. $\rho=1$ so the Ratio Test fails for $\sum_{n=1}^{\infty} a_{n} \quad$ d. $\sum_{n=1}^{\infty} a_{n}$ diverges \quad e. none of these
9. What is the LARGEST interval for which the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}
$$

is absolutely convergent?
a. $(1,5)$
b. $(-4,-2)$
c. $(-5,-1)$
d. $[-5,-1]$
e. none of these
10. Suppose that the radius of convergence of a power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ is 16 . What is the radius of convergence of the power series $\sum_{n=0}^{\infty} c_{n} x^{2 n}$?
a. 256
b. 4
c. 1
d. 16
e. none of these

