Prof. Girardi		Math 142	Fall 2012	11.08 .12	Exam 2
MARK BOX			NAME:		
PROBLEM	Points				
$1 \mathrm{a}-\mathrm{k}$	35				
2	10				
3	10				
4	10				
5	10				
6	10				
7	15				
\%	100				

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) If you do not make at least 17.5 out of the 35 points on Problem 1, then your score for the entire exam will be whatever you made on Problem 1.
(6) This exam covers (from Calculus by Stewart, $6^{\text {th }}$ ed., ET):
11.2-11.8.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.
As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.
I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.

Furthermore, I have not only read but will also follow the above Instructions.
\qquad

1. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

1a. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .

1b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$

- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad

1c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$

- converges if and only if p \qquad
- diverges if and only if p \qquad

1d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .

Then $\sum a_{n}$ converges if and only if \qquad converges.

1e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$. (Fill in the blanks with a_{n} and/or b_{n}.)

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and \sum \qquad converge, then \sum \qquad converge.
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and \sum \qquad diverge, then \sum \qquad diverge.

1f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .

1g. Ratio and Root Tests for arbitrary-termed series $\sum a_{n}$ with $-\infty<a_{n}<\infty$.
Let $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$.

- If $\rho \ldots$ then $\sum a_{n}$ converges absolutely.
- If $\rho \quad$ then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.

1h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If

- a_{n} \qquad a_{n+1} for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad

1i. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad
$\mathbf{1 j}$. Fill in the 3 blank lines (with absolutely convergent, conditional convergent, or divergent) on the following FLOW CHART for class used to determine if a series $\sum_{n=17}^{\infty} a_{n}$ is: absolutely convergent, conditional convergent, or divergent.

Does $\sum a_{n}$ satisfy the conditions of the Alternating Series Test?
if YES \Downarrow

$\mathbf{1 k}$. Circle T if the statement is TRUE. Circle F if the statement if FALSE.

$$
\begin{array}{lll}
\mathrm{T} & \text { F } & \text { If } \sum a_{n} \text { converges, then } \lim _{n \rightarrow \infty} a_{n}=0 . \\
\text { T } & \text { F } & \text { If } \lim _{n \rightarrow \infty} a_{n}=0, \text { then } \sum a_{n} \text { converges } \\
\text { T } & \text { F } & \text { If } \sum a_{n} \text { converges and } \sum b_{n} \text { converge, then } \sum\left(a_{n}+b_{n}\right) \text { converges. } \\
\text { T } & \text { F } & \text { If } \sum\left(a_{n}+b_{n}\right) \text { converges, then } \sum a_{n} \text { converges and } \sum b_{n} \text { converge. } \\
\text { T } & \text { F } & \text { If } S_{N}=\sum_{n=1}^{N} r^{n}, \text { then } S_{N}=\frac{r-r^{N}}{1-r}, \text { for when } r \neq 1 \text { since we don't like to divide by zero. }
\end{array}
$$

2. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

3. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
& \square & \text { absolutely convergent } \\
\sum_{n=1}^{\infty} \frac{4 n^{7}-n^{6}+21}{11 n^{8}-n+17} & \square \text { conditionally convergent } \\
& \square \text { divergent }
\end{array}
$$

You may use, without showing, that for $n \geq 1$

$$
a_{n}:=\frac{4 n^{7}-n^{6}+21}{11 n^{8}-n+17}>0 .
$$

Hint. What would be easier: CT or LCT?
4. Let

$$
a_{n}=\frac{n!}{(2 n-1)!}
$$

4a. Find an expression for $\frac{a_{n+1}}{a_{n}}$ that does NOT have a fractorial sign (that is a ! sign) in it.

$$
\frac{a_{n+1}}{a_{n}}=
$$

4b. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n-1)!} & \begin{array}{l}
\text { absolutely convergent } \\
\end{array} & \begin{array}{l}
\text { conditionally convergent } \\
\end{array} \\
& \square & \text { divergent }
\end{array}
$$

5. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{3 n^{2}+8 n-1}$ \square conditionally convergent
\square divergent
6. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
$\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{\sqrt{n}}$

conditionally convergent
\square divergent
7. Geometric Series. (On this page, you should do basic algebra but you do NOT have to do any fancy arithmetic (eg, just making up numbers, you can leave $\left(\frac{17}{18}\right)^{171}$ as just that.) Let, for $N \geq 51$,

$$
s_{N}=\sum_{n=51}^{N} 2 \frac{3^{n+1}}{5^{n}}
$$

7a. Do some algebra to write s_{N} as $\sum_{n=51}^{N} c r^{n}$ for an appropriate constant c and ratio r.

$$
s_{N}=\sum_{n=51}^{N}
$$

$\mathbf{7 b}$. Using the method from class (rather than some formula), find an expression for s_{N} in closed form (i.e. without a summation \sum sign nor some dots).

```
s}N
```

7c. Does $\sum_{n=51}^{\infty} 2 \frac{3^{n+1}}{5^{n}}$ converge or diverge? If it converges, find its sum. Justify your answer.

$$
\sum_{n=51}^{\infty} 2 \frac{3^{n+1}}{5^{n}}
$$

