Prof. Girardi		Math 14	Fall 2012	09.27.12	Exam 1
MARK BOX		OX			
PROBLEM	POINTS				
1	25				
2	5				
3	10		NAME:		
4	10				
5	10				
6	10		class PIN:		
7	10				
8	10				
TOTAL	90				
%	100				

INSTRUCTIONS:

- (1) To receive credit you must:
 - (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that *just appears*; such explanations help with partial credit
 - (b) if a line/box is provided, then:
 - show you work BELOW the line/box
 - put your answer on/in the line/box
 - (c) if no such line/box is provided, then box your answer
- (2) The MARK BOX indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- (3) You may **not** use an electronic device, a calculator, books, personal notes.
- (4) During this exam, do not leave your seat unless you have permission. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
- (5) If you do not make at least 12.5 out of 25 points on Problem 1, then your score for the entire exam will be whatever you made on Problem 1.
- (6) This exam covers (from *Calculus* (ET) by Stewart $6^{\rm th}$ ed.): Sections 7.1 7.5, 7.8, 11.1 .

Hints:

- (1) You can check your answers to the indefinite integrals by differentiating.
- (2) For more partial credit, box your u du substitutions.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

I understand that if it is determined that I used any unauthorized assistance or otherwise violated the University's Honor Code then I will receive a failing grade for this course and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary actions.

Furthermore, I have not only read but will also follow the above Instructions.

a			
Signature:			
oignature			

1. Fill in the blanks (each worth 1 point).

1a.
$$\int \frac{du}{u} =$$
 $|u| + C$

1b. If a is a constant and a > 0 but $a \neq 1$, then $\int a^u du = \underline{\qquad} + C$

$$1c. \int \cos u \, du = \underline{\hspace{1cm}} + C$$

$$\mathbf{1d.} \int \sec^2 u \, du = \underline{\hspace{1cm}} + C$$

1e.
$$\int \sec u \tan u \, du = \underline{\qquad} + C$$

$$\mathbf{1f.} \int \sin u \, du = \underline{\hspace{1cm}} + C$$

$$\mathbf{1g.} \int \csc^2 u \, du = \underline{\qquad} + C$$

1h.
$$\int \csc u \cot u \, du = \underline{\hspace{1cm}} + C$$

$$\mathbf{1i.} \int \tan u \, du = \underline{} + C$$

$$\mathbf{1j.} \int \cot u \, du = \underline{\hspace{1cm}} + C$$

$$1k. \int \sec u \, du = \underline{\hspace{1cm}} + C$$

11.
$$\int \csc u \, du = \underline{\hspace{1cm}} + C$$

1m.If a is a contant and
$$a > 0$$
 then $\int \frac{1}{\sqrt{a^2 - u^2}} du = \underline{\hspace{1cm}} + C$

1n. If a is a contant and
$$a > 0$$
 then $\int \frac{1}{a^2 + u^2} du = \underline{\hspace{1cm}} + C$

10. If a is a contant and
$$a > 0$$
 then $\int \frac{1}{u\sqrt{u^2-a^2}} du = \underline{\hspace{1cm}} + C$

- **1p.** Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and [degree of f] \geq [degree of g], then one must first do ______
- 1q. Integration by parts formula: $\int u \, dv =$
- 1r. Trig substitution: (recall that the *integrand* is the function you are integrating) if the integrand involves a^2-u^2 , then one makes the substitution u=
- 1s. Trig substitution: if the integrand involves a^2+u^2 , then one makes the substitution u=
- 1t. Trig substitution: if the integrand involves u^2-a^2 , then one makes the substitution u=
- **1u.** trig formula ... your answer should involve trig functions of θ , and not of 2θ : $\sin(2\theta) = \underline{\hspace{1cm}}$.
- 1v. trig formula ... $\cos(2\theta)$ should appear in the numerator: $\cos^2(\theta) = \frac{1}{2}$ ______.
- **1w.** trig formula ... $\cos(2\theta)$ should appear in the numerator: $\sin^2(\theta) = \frac{1}{2}$ ______.
- **1x.** trig formula ... since $\cos^2 \theta + \sin^2 \theta = 1$, we know that the corresponding relationship beween tangent (i.e., tan) and secant (i.e., sec) is ______.

2.
$$\int (\sin x) (\sec x) dx = + C$$

$$3. \int x \tan^2 x \, dx =$$

+ C

$$\int \ln(1+x) \ dx =$$
 + C

Hint: bring to the other side idea.

$$\int \frac{x^2}{\sqrt{4-x^2}} \ dx = + C$$

6.
$$\int \frac{x^4 + 2x + 2}{x^4(x+1)} dx = + C$$

Hint
$$x^4 = (x - 0)^4$$

7.
$$\int_{1}^{\infty} \frac{1}{(3x+1)^4} \ dx =$$

Warning: write your solution in proper form.

8. For the following **SEQUENCES**:

- if the limit exists, find it
- \bullet if the limit does not exist, then say that it DNE.

Put your ANSWER IN the box and show your WORK BELOW the box.

8a.

$$\lim_{n \to \infty} \frac{5n^2 + 4\sqrt{n}}{6n^3 + 7n^2 + 1} =$$

8b.

$$\lim_{n \to \infty} \frac{5n^8 + 4\sqrt{n}}{6n^3 + 7n^2 + 1} =$$

8c.

$$\lim_{n \to \infty} \frac{5n^3 + 4\sqrt{n}}{6n^3 + 7n^2 + 1} =$$