Prof. Girardi \quad Math $142 \quad$ Typical First Few Problems on Sequences \& Series Exam
If you do not make at least a 50% on this exam's first few problems, then your total exam score will be only as many points was you managed to get on the first few problems. Here are some typical first few problems.

1. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: You should NOT write the words absolute nor conditional on Problem 1!
1a. Sequences (Afterall, this is needed for Geometric Series!)
Let $-\infty<r<\infty$. (Fill-in-the blanks with exists or does not exist, i.e. DNE)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}$
- If $|r|>1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}$
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
1b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$
- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
1c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
1d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f\left({ }^{\quad}\right)$ for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .
Then $\sum a_{n}$ converges if and only if \qquad converges.

1e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad then $\sum a_{n}$ \qquad .

1f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .

1g. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.

- If ρ \qquad then $\sum a_{n}$ converges.
- If ρ \qquad then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.

1h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If

- $a_{n} \quad a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=\underline{ }$
then $\sum(-1)^{n} a_{n}$
1i. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
$\mathbf{1 j}$. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad
1k. If a power series in $x-x_{0}$ has radius of convergence R where $0<R<\infty$, then the power series is:
- absolutely convergent for \qquad
- divergent for \qquad

11. Consider a function $y=f(x)$ where $f:[1, \infty) \rightarrow \mathbb{R}$.

Next consider the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n} \stackrel{\text { def. }}{=} f(n)$.

- If the limit of the function $y=f(x)$ as $x \rightarrow \infty$ is L,
then the limit of the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as $n \rightarrow \infty$ is \qquad .
- If $\lim _{n \rightarrow \infty} a_{n}=L$, is it necessarily true that $\lim _{x \rightarrow \infty} f(x)=L$? Circle: Yes or No

2. Fill in the 3 blank lines (with absolutely convergent, conditional convergent, or divergent) on the following FLOW CHART for class used to determine if a series $\sum_{n=17}^{\infty} a_{n}$ is: absolutely convergent, conditional convergent, or divergent.

Does $\sum\left\|a_{n}\right\|$ converge? Since $\left\|a_{n}\right\| \geq 0$, use a positive term test: integral test, CT, LCT, ratio/root test.	$\stackrel{\text { if }}{ } \mathrm{NO}^{\circ}$	$\begin{array}{\|l\|l} \text { Does } \\ \lim _{n \rightarrow \infty}\left\|a_{n}\right\|=0 ? & \stackrel{\text { if NO }}{\Rightarrow} \end{array}$	$\sum a_{n}$ is
if YES \Downarrow		if YES \Downarrow	
$\sum a_{n}$ is		Is $\sum a_{n}$ an alternating series?	
		if YES \downarrow	

Does $\sum a_{n}$ satisfy the conditions of the Alternating Series Test?
if YES \downarrow
$\sum a_{n}$ is \qquad
3. Circle T if the statement is TRUE. Circle F if the statement if FALSE. To be more specific: circle T if the statement is always true and circle F if the statement is NOT always true. Scoring: 2 pts for a correct answer, 1 pt for a blank answer, 0 pts for an incorrect answer.

T
T
T

T

T
T
T
T

F If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
F If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges.
F
If a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies that $\lim _{n \rightarrow \infty} a_{n}=L$ and
$f:[0, \infty) \rightarrow \mathbb{R}$ is a function satisfying that $f(n)=a_{n}$ for each natural number n,
then $\lim _{x \rightarrow \infty} f(x)=L$.

F

F
F
If a function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies that $\lim _{x \rightarrow \infty} f(x)=L$ and
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence satisfying that $f(n)=a_{n}$ for each natural number n, then $\lim _{n \rightarrow \infty} a_{n}=L$.

If $\sum a_{n}$ converges and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right)$ converges.
If $\sum\left(a_{n}+b_{n}\right)$ converges, then $\sum a_{n}$ converges and $\sum b_{n}$ converge.
If $r \neq 1$ and $S_{N}=\sum_{n=17}^{N} r^{n}$, then $S_{N}=\frac{r^{17}-r^{N+1}}{1-r}$ for each $N>17$.
NOTICE, the above sum starts at $n=17$, not at $n=0$.

4
4. Geometric Series. Let, for $N \geq 102$,

$$
s_{N}=\sum_{n=102}^{N} 3 \frac{2^{n}}{7^{n+1}} .
$$

4a. Do some algebra to write s_{N} as $\sum_{n=102}^{N} c r^{n}$ for an appropriate constant c and ratio r.

$$
s_{N}=\sum_{n=102}^{N}
$$

4b. Using the method from class (rather than some formula), find an expression for s_{N} in closed form (i.e. without a summation \sum sign nor some dots).
$s_{N}=$

4c. Does $\sum_{n=102}^{\infty} 3 \frac{2^{n}}{7^{n+1}}$ converge or diverge? If it converges, find its sum. Justify your answer.

$$
\sum_{n=102}^{\infty} 3 \frac{2^{n}}{7^{n+1}}
$$

