Prof. Girardi	Math 142	Fall 2008	Practice Problems for Final Exam Studies

1. Find and simplify if necessary.

1a. $D_{x}\left[e^{3 x^{2}+1}\right]$
1b. $D_{x}\left[\ln \left(3 x^{2}+17\right)\right]$
1c. $D_{x}\left[(1+x)^{2 x}\right]$
1d. $D_{x}\left[\sin ^{3}(4 x)\right]$
1e. $\frac{d}{d x} e^{\tan x}$
1f. $\frac{d}{d x}[\ln x]^{2 x+3}$
1g. $D_{x}\left[17^{3 x^{2}+1}\right]$
1h. $D_{x}[\ln (\cos (4 x))]$
2. Integrate each of the following using an appropriate method.

2a. $\int \ln x d x$
2b. $\int \sin ^{2} x d x$
2c. $\int \sin ^{3} x d x$
2d. $\int x^{2} \sin x d x$
2e. $\int \frac{x^{4}-2 x^{2}+4 x+1}{x^{3}-x^{2}-x+1} d x$
2f. $\int \frac{x^{3}}{\sqrt{1-x^{2}}} d x$
2g. $\int x^{2} \arctan x d x$
2h. $\int e^{x} \cos x d x$
2i. $\int \frac{x}{x^{4}+4 x^{2}+8} d x$
2j. $\int \frac{x^{4}+2 x+2}{x^{5}+x^{4}} d x$
2k. $\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x$
21. $\int_{0}^{\infty} \frac{d x}{1+x}$

2m. $\int_{-\infty}^{\infty} \frac{x}{x^{2}+1} d x$
3. Find the limit.

3a. $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}$
3b. $\lim _{n \rightarrow \infty} \frac{12 n^{17}+188 n^{7}-19 n}{4 n^{18}-n^{9}+10}$
3c. $\lim _{x \rightarrow \infty}\left[1+\frac{c}{x}\right]^{x}$ where c is a constant and $c \neq 0$
3d. $\lim _{n \rightarrow \infty} \frac{n^{17,000}}{e^{n}}$
4. Let

$$
s_{N}=\sum_{n=5}^{N} \frac{8\left(3^{n}\right)}{\left(4^{n+2}\right)}
$$

for $N=5,6,7, \ldots$ Find a formula for s_{N} as we did in class (Thus backing up your formula with algebra. Your formula should not have a \sum sign in it nor have ... in it.) Does the infinite series $\sum_{n=5}^{\infty} \frac{8\left(3^{n}\right)}{\left(4^{n+2}\right)}$ converge or diverge? If it converges, find its sum.
5. Decide if the given series is: absolutely convergent, conditionally convergent, or divergent.

5a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$
5b. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\left(3^{n}\right) n!}{(2 n)!}$
5c. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{1+n^{2}}$
5d. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{5 n}$
5e. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{10 n+1}$
5f. $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n \ln n}$
$5 \mathrm{~g} . \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{4}}{2^{n}}$
5h. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1}$
5i. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$
5j. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n \sqrt{n}}$
5k. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n(n+1)}}$
51. $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{n^{2}}$
6. Consider the following formal power series. Make a diagram (as we did in class) indicating for which x 's this series is: absolutely convergent, conditionally convergent, divergent. Indicate your reasoning. Don't forget to check the endpoints.
6a. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$
6b. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
6c. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n}$
6d. $1+\frac{x-3}{1^{2}}+\frac{(x-3)^{2}}{2^{2}}+\frac{(x-3)^{3}}{3^{2}}+\ldots+\frac{(x-3)^{n-1}}{(n-1)^{2}}+\ldots$
6e. $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{\sqrt{n}}$
6f. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}$
6g. $\sum_{n=1}^{\infty} n!(x-1)^{n}$
7. Recall the geometric series.

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

which is valid for $|r|<1$.
7a. Using the geometric series, find a power series representation for $f(t)=\frac{1}{9+t}$ about $t=0$ and say when it is valid.

7b. Using the geometric series, find a power series representation for $g(x)=\frac{7}{9+4 x}$ about $x=3$ and say when it is valid.
8. Express as integral(s) the volume of the solid obtained by revolving the given region R about the given axis of revolution.
8a. R is the region in the first quadrant bounded by the parabola $y^{2}=8 x$ and the line $x=2$. Axis of revolution is the x-axis. (disk/washer method)
8b. R is the region bounded by the parabola $y^{2}=8 x$ and the line $x=2$. Axis of revolution is the $x=2$. (disk/washer method)

8c. R is the region bounded by the parabola $y^{2}=8 x$ and the line $x=2$. Axis of revolution is the y-axis. (disk/washer method)
$\mathbf{8 d}$. R is the region bounded by the parabola $y=4 x-x^{2}$ and the x-axis. Axis of revolution is the line $y=6 .($ disk/washer method)
8e. R is the region bounded by the parabola $y^{2}=8 x$ and the line $x=2$. Axis of revolution is the line $x=2$. (shell method)
8f. R is the region bounded by the circle $x^{2}+y^{2}=4$. Axis of revolution is the line $x=3$. (shell method)
$8 \mathrm{~g} . R$ is the region bounded by $y=-x^{2}-3 x+6$ and $x+y-3=0$. Axis of revolution is: (a) the line $x=3$, and (b) the line $y=0$. (you choose the method).
9. WORK: For units of let's use in.-lb. where distance is in inches (in.) and force is in pound (lb). Hooke's Law Under appropriate conditions a spring that is stretched x units beyond its natural length pulls back with a force $F(x)=k x$ where k is a (positive) constant (called the spring constant or spring stiffness).
9a. When a particle is located at a distance x inches from the origin, a force of $F(x)=x^{2}+2 x$ pounds acts on it. How much work is done in moving it from $x=1$ to $x=3$?

9b. A force of 9 pounds is required to stretch a spring from its natural length of 6 inches to a length of 8 inches.
(a) Find the work done in stretching the spring from its natural length to a length of 10 inches.
(b) Find the work done in stretching the spring from a length of 7 inches to a length of 9 inches.
10. Express the length following curves as integral(s).

10a.The curve $y=x^{3 / 2}$ from $x=0$ to $x=5$.
10b.The curve $x=3 y^{3 / 2}-1$ from $y=0$ to $y=4$.
10c.The arc $24 x y=x^{4}+48$ from $x=2$ to $x=4$.
10d.The arc of the catenary $y=\frac{1}{2} a\left(e^{x / a}+e^{-x / a}\right)$ from $x=0$ to $x=a$.
10e.The curve $x=t^{2}, y=t^{3}$ from $t=0$ to $t=4$.
10f. The cycloid $x=\theta-\sin \theta, y=1-\cos \theta$ for $\theta=0$ to $\theta=2 \pi$.

