Prof. Girardi		Math 142
MARK BOX		
PROBLEM	Points	
$1 \mathrm{a}-\mathrm{j}$	30	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
take home	10	
\%	100	

Fall $2008 \quad 10.30 .08$

Exam 2

NAME (legibly printed): \qquad

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.): Sections 10.1-10.6, 10.8 for the inclass and Section 10.7. 10.9, 10.10 for the take home. .

Problem Inspiration: See the answer key.

1. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!
1a. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .

1b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$

- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
1c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
1d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f(\quad$ _ $)$ for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .
Then $\sum a_{n}$ converges if and only if \qquad converges.

1e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad then $\sum a_{n}$ \qquad .

1f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .

1g. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.

- If $\rho \quad$ then $\sum a_{n}$ converges.
- If $\rho \ldots$ then $\sum a_{n}$ diverges.
- If $\rho \ldots$ then the test is inconclusive.

1h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If

- a_{n} \qquad a_{n+1} for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad

1i. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad
$\mathbf{1 j}$. If a power series in $x-x_{0}$ has radius of convergence R where $0<R<\infty$, then the power series is:
- absolutely convergent for \qquad
- divergent for \qquad

2. Circle T if the statement is TRUE. Circle F if the statement if FALSE. To be more specific: circle T if the statement is always true and circle F if the statement is NOT always true.
Scoreing: 2 pts for a correct answer, 1 pt for a blank answer, 0 pts for an incorrect answer.

T

T

T

T
T

F If a function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies that $\lim _{x \rightarrow \infty} f(x)=L$ and
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence satisfying that $f(n)=a_{n}$ for each natural number n,
then $\lim _{n \rightarrow \infty} a_{n}=L$.
F
If a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies that $\lim _{n \rightarrow \infty} a_{n}=L$ and
$f:[0, \infty) \rightarrow \mathbb{R}$ is a function satisfying that $f(n)=a_{n}$ for each natural number n,
then $\lim _{x \rightarrow \infty} f(x)=L$.
F
F If $\sum a_{n}$ converges and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right)$ converges.

F
If $\sum\left(a_{n}+b_{n}\right)$ converges, then $\sum a_{n}$ converges and $\sum b_{n}$ converge.
If $r \neq 1$ and $S_{N}=\sum_{n=17}^{N} r^{n}$, then $S_{N}=\frac{r^{17}-r^{N+1}}{1-r}$ for each $N>17$.
NOTICE, the above sum starts at $n=17$, not at $n=0$.
3. Find the limit of the following sequences. Indicate your reasoning.

Put ANSWER IN BOX and show WORK BELOW BOX.
There is: $3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}$ (on this page), and then 3d on the next page.
3a. $\lim _{n \rightarrow \infty}(.999917)^{n}=$

3b. $\lim _{n \rightarrow \infty}(1.0000017)^{n}=$

3c. $\lim _{n \rightarrow \infty} \frac{5 n^{3}+6 n+3}{17 n^{3}+9 n^{2}+4}=$

3d.
$\lim _{n \rightarrow \infty}\left(\frac{n+6}{n+1}\right)^{n}=$
Hint: if $\ln \left(a_{n}\right) \rightarrow 17$, then $a_{n} \equiv e^{\ln \left(a_{n}\right)} \rightarrow e^{17}$
4. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

5. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

6. Let

$$
a_{n}=\frac{3^{n} n!}{(2 n)!}
$$

6a. Find an expression for $\frac{a_{n+1}}{a_{n}}$ that does NOT have a fractorial sign (that is a ! sign) in it. Hint: $(2(n+1))!=(2 n+2)$!
$\frac{a_{n+1}}{a_{n}}=$

6b. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n} n!}{(2 n)!} & \begin{array}{l}
\text { absolutely convergent } \\
\end{array} & \begin{array}{ll}
\text { conditionally convergent } \\
& \square \\
& \text { divergent }
\end{array}
\end{array}
$$

7. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+6)^{n}}{4^{n}}
$$

Hint: $(2 x+6)^{n}=[2(x+3)]^{n}=2^{n}(x+3)^{n}=2^{n}(x-(-3))^{n}$
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.

