

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.): Sections 8.1, 8.2, 8.3, 8.4, 8.5, 8.7, 8.8. .

Problem Inspiration: If I told you here, you would know what method to use. So see the solution key, which will be available from the course homepage shortly after the exam.

Hints:

(1) You can check your answers to the indefinite integrals by differentiating.
(2) $+\mathbf{C}$
(3) For more partial credit, box your $u-d u$ substitutions.

1. Fill in the blanks (each worth 1 point).

1a. $\int \frac{d u}{u}=$ \qquad $|u|+C$

1b. If a is a constant and $a>0$ but $a \neq 1$, then $\int a^{u} d u=$ \qquad $+C$
1c. $\int \cos u d u=$ \qquad $+C$

1d. $\int \sec ^{2} u d u=$
_
\qquad
\qquad $+C$

1e. $\int \sec u \tan u d u=\square$
1f. $\int \sin u d u=\square+C$
1g. $\int \csc ^{2} u d u=\square+C$
1h. $\int \csc u \cot u d u=\square+C$
1i. $\int \tan u d u=\square+C$
$\mathbf{1 j} . \int \cot u d u=\square+C$
$\mathbf{1 k} \cdot \int \sec u d u=\square+C$
11. $\int \csc u d u=\square+C$

1 m .If a is a contant and $a>0$ then $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\ldots+C$
1n. If a is a contant and $a>0$ then $\int \frac{1}{a^{2}+u^{2}} d u=\ldots+C$
10. If a is a contant and $a>0$ then $\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u=\square+C$

1p. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and $[$ degree of $f] \geq[$ degree of $g]$, then one must first do \qquad
1q. Integration by parts formula: $\int u d v=$ \qquad
1r. Trig substitution: (recall that the integrand is the function you are integrating) if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ \qquad
1s. Trig substitution:
if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ \qquad
1t. Trig substitution:
if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ \qquad
1u. trig formula ... your answer should involve trig functions of θ, and not of $2 \theta: \sin (2 \theta)=$ \qquad -.

1v. trig formula ... $\cos (2 \theta)$ should appear in the numerator: $\cos ^{2}(\theta)=$ \qquad
1w.trig formula $\ldots \cos (2 \theta)$ should appear in the numerator: $\sin ^{2}(\theta)=$ \qquad
1x. trig formula ... since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship beween tangent (i.e., \tan) and secant (i.e., sec) is \qquad -
$\mathbf{1 y} \cdot \arctan (-\sqrt{3})=$ \qquad RADIANS. (your answer should be an angle)
2.
$\int\left(\sec ^{3} x\right)\left(\tan ^{3} x\right) d x=$

+ C

3.

$$
\int \frac{1}{\left(4+x^{2}\right)^{2}} d x=
$$

$$
+\mathrm{C}
$$

4.

$$
\int \frac{x^{3}+x^{2}+2 x+1}{x^{4}+2 x^{2}+1} d x=
$$

$$
+\mathrm{C}
$$

Hint: $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$.
5. $\int x^{3} e^{x^{2}} d x=+\mathrm{C}$
6.
$\int \sin (\ln x) d x=$
$+\mathrm{C}$

Hint: bring to the other side idea.
7. $\int_{0}^{e} \frac{d x}{x-2}=$

HINT: $e \approx 2.7>2$

