Prof. Girardi Math 142	Fall 2008	09.25.08	Exam 1 - Take Home Part
------------------------	-----------	----------	-------------------------

MARK BOX		
PROBLEM	POINTS	
1 - 10	10	
TOTAL	10	

NAME (legibly printed):	
(0 0 1 /	

class PIN:

INSTRUCTIONS:

- (1) To receive credit you must:
 - (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that *just appears*; such explanations help with partial credit
 - (b) if a line/box is provided, then:
 - show you work BELOW the line/box
 - put your answer on/in the line/box
 - (c) if no such line/box is provided, then box your answer
- (2) The MARK BOX indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- (3) This exam covers (from Calculus by Anton, Bivens, Davis 8^{th} ed.): Section 8.7.

Problem Inspiration: just like the homework.

Honor Code Statement

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code.

As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam.

Furthermore, I have not only read but will also follow the above Instructions.

I hereby verify that I did NOT receive help from other people on this take-home exam problem.

Signature :		
0		

Numerical Integration . Let

$$f(x) = \frac{1}{(x+1)^2}$$
 and $I = \int_{x=1}^{x=4} f(x) dx$.

The 10 steps of this problem are similar to the homework but the number of subintervals is 6 and not 10. On the parts that say "Do not use a calculator", you need not do alot of arthritic.

1. Find the exact value of I, without using a calculator. Your answer should be a fraction, without decimal places.

I =

2. Find an approximation for I, using part 1 and your calculator, to as many decimal places as your calculator will give you.

I~pprox

3. Approximate I using the Trapezoid Rule T_n with n = 6 subintervals. Do not use a calculator (so your answer will have several numbers added together).

 $T_6 =$

4. Find an approximation for T_6 , using part 3 and your calculator, to as many decimal places as your calculator will give you.

 $igg|_{T_6} \, pprox \,$

5.	Approximate I using Simpon's Rule S_{2n} with $2n=6$ subintervals. Do not use a calculator (so ye	our
	answer will have several numbers added together).	
	$S_6 =$	

6. Find an approximation for S_6 , using part 5 and your calculator, to as many decimal places as your calculator will give you.

$$S_6 \approx$$

*. Find the first 4 derivatives of the given y = f(x) that we are working with.

7.	Use inequality (11), page 563, to find an upper bound on the error	r in part 3. Do not use a calculator
	$ T_6 - I \le$	

8. Use your calculator to approximate the error estimate in part 7 to as many decimal places as your calculator will give you.

 $|T_6 - I| \lesssim$

9. Use inequality (12), page 563 to find an upper bound on the error in part 5. Do not use a calculator.

 $|S_6 - I| \le$

10. Use your calculator to approximate the error iestimate in part 9, to as many decimal places as your calculator will give you.

 $|S_6 - I| \lesssim$