Prof. Girardi	Math 142	Spring 2006	04.29 .06	Final Exam

MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{y}$	25	
$2 \mathrm{a}-\mathrm{o}$	15	
3	3	
$4 \mathrm{a}-\mathrm{c}$	5	
NAME:		

please check the box of your section

or
\square Section 002 (MW 10:10 am)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears;
such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.):

S 7.1-7.4, 7.6, 7.7, 8.1-8.5, 8.8, 10.1-10.10, 11.1-11.3. .

1. Fill in the blanks (each worth 1 point).

1a. $\int \frac{d u}{u}=$ \qquad $|u|+C$

1b. If a is a constant and $a>0$ but $a \neq 1$, then $\int a^{u} d u=$ \qquad $+C$

1c. $\int \cos u d u=$ \qquad $+C$

1d. $\int \sec ^{2} u d u=$ \qquad $+C$
1e. $\int \sec u \tan u d u=$ \qquad $+C$
1f. $\int \sin u d u=$ \qquad $+C$

1g. $\int \csc ^{2} u d u=\square+C$
1h. $\int \csc u \cot u d u=\square$
1i. $\int \tan u d u=\square+C$
$\mathbf{1 j} . \int \cot u d u=\square+C$
1k. $\int \sec u d u=$ \qquad $+C$
11. $\int \csc u d u=$ \qquad $+C$
1m.If a is a contant and $a>0$ then $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\square+C$
1n. If a is a contant and $a>0$ then $\int \frac{1}{a^{2}+u^{2}} d u=\square+C$
1o. If a is a contant and $a>0$ then $\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u=\ldots+C$
1p. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and [degree of $f] \geq[$ degree of g], then one must first do \qquad
1q. Integration by parts formula: $\int u d v=$ \qquad
1r. Trig substitution: (recall that the integrand is the function you are integrating) if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ \qquad
1s. Trig substitution:
if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ \qquad
1t. Trig substitution:
if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ \qquad
1u. trig formula \ldots your answer should involve trig functions of θ, and not of $2 \theta: \sin (2 \theta)=$ \qquad -.
1v. trig formula ... $\cos (2 \theta)$ should appear in the numerator: $\cos ^{2}(\theta)=$ \qquad
$\mathbf{1 w}$.trig formula.. $\cos (2 \theta)$ should appear in the numerator: $\sin ^{2}(\theta)=$ \qquad
$\mathbf{1 x}$. trig formula ... since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship beween tangent (i.e., \tan) and secant (i.e., sec) is \qquad .
1y. $\arctan \left(\frac{-1}{\sqrt{3}}\right)=$ \qquad RADIANS. (your answer should be an angle)
2. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!
2a. Sequences Let $-\infty<r<\infty$. (Fill-in-the blanks with exists or does not exist, i.e. DNE)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}$
- If $|r|>1$, then $\lim _{n \rightarrow \infty} r^{n}$
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}$
\qquad
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
2b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$
- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
2c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
2d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f\left(ـ^{\quad}\right)$ for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function.
Then $\sum a_{n}$ converges if and only if \qquad converges.
2e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad -
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad
2f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .
$\mathbf{2 g}$. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.
- If ρ \qquad then $\sum a_{n}$ converges.
- If ρ \qquad then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.

2h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$.
If

- $a_{n} \ldots a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad
2i. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
$\mathbf{2 j}$. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad

2k. Consider a function $y=f(x)$ where $f:[1, \infty) \rightarrow \mathbb{R}$.
Next consider the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n} \stackrel{\text { def. }}{=} f(n)$.

- If the limit of the function $y=f(x)$ as $x \rightarrow \infty$ is L,
then the limit of the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as $n \rightarrow \infty$ is \qquad .
- If $\lim _{n \rightarrow \infty} a_{n}=L$, is it necessarily true that $\lim _{x \rightarrow \infty} f(x)=L$? Circle: Yes or No

$$
\text { for } 21-20
$$

Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=p_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=p_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
21. In open form (i.e., with \ldots and without a \sum-sign)
\square
2m.In closed form (i.e., with a \sum-sign and without ...)
\square

$$
p_{N}(x)=
$$

2n. In closed form (i.e., with a \sum-sign and without ...)
\square

$$
p_{\infty}(x)=
$$

20. We know that $f(x)=p_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

21. Fill in the 3 blank lines (with absolutely convergent, conditional convergent, or divergent) on the following FLOW CHART for class used to determine if a series $\sum_{n=17}^{\infty} a_{n}$ is: absolutely convergent, conditional convergent, or divergent.

22. Let R be the region in the $x-y$-plane that is enclosed by

$$
y=x \quad \text { and } \quad y=4 x+1 \quad \text { and } \quad x=0 \quad \text { and } \quad x=1 .
$$

In each of problems $\mathbf{4 b}$ and $\mathbf{4 c}$:

- R will be revolved around some line to create a solid of revolution
- using either the disk, washer, or shell method, express the volume V of the resulting solid of revolution as one integral (and NOT as 2 or more integrals).
- In the space provided below each problem, make some good enough sketch (does not have to be too fancy) to indicate (i.e., help justify) your thinking/reseasoning behind your solution
- you do not have to do lots of algebra to your integrand
- you do not have to integrate your integral.

4a. Make a sketch of R below and label important points. Also, in your sketch of R below, draw in a typical rectangle (should it be horizontal or vertical?) that would be used to express the area of R as precisely 1 integral (and not 2 integrals).
$\mathbf{4 b}$. The volume V of the solid obtained by revolving the region R about the x-axis is
\square
$\operatorname{Hint}\left(r_{\text {big }}^{2}-r_{\text {little }}^{2}\right) \neq\left(r_{\text {big }}-r_{\text {little }}\right)^{2}$

4c. The volume V of the solid obtained by revolving the region R about the line $x=2$ is

$$
\mathrm{V}=
$$

Hint: the line $x=2$ is a vertical line (it is NOT a horizontal line).
5.

$$
\int \sec ^{3} x \tan ^{3} x d x=\quad+C
$$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
6. $\int \frac{d x}{\left(4+x^{2}\right)^{2}}=$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
Hint: useful might be problems: $1 \mathrm{r}-1 \mathrm{w}$.
7. $\int \frac{x^{3}+x^{2}+2 x+1}{x^{4}+2 x^{2}+1} d x=$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time). Hint: $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}$, which is a irreducible quadatic squared.
8.
$\int x^{3} e^{x^{2}} d x=$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
Hint: one lesson from parts was to look for a $d v$ that is easy to integrate and thus get the v.
9.
$\int \sin (\ln x) d x=$
$+C$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
Hint: one lesson from parts was that if the integrand is easy to differentiate but hard to integrate, then let u be in integrand. Another lesson from parts was the bring to the other side idea.
10. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

[^0]11. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\[

$$
\begin{array}{lll}
\sum_{n=8}^{\infty}(-1)^{n} \frac{n!}{(2 n-1)!} & \square & \text { absolutely convergent } \\
& \square \text { conditionally convergent } \\
& \square \text { divergent }
\end{array}
$$
\]

But before you get started let

$$
a_{n}=\frac{n!}{(2 n-1)!} .
$$

Then $a_{n+1}=$

Next, simplify $\frac{a_{n+1}}{a_{n}}$ so that it has NO factorial sign (that is a ! sign) in it.
$\frac{a_{n+1}}{a_{n}}=$

Ok, now you should be ready to finish off the problem and check the correct box above.
12. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{5^{n}(x-3)^{n}}{n^{2}}
$$

Hint: $\left|\frac{5^{n+1}(x-3)^{n+1}}{(n+1)^{2}} \frac{n^{2}}{5^{n}(x-3)^{n}}\right|=\frac{5^{n+1}}{5^{n}} \frac{|x-3|^{n+1}}{|x-3|^{n}} \frac{n^{2}}{(n+1)^{2}}=5|x-3|\left(\frac{n}{n+1}\right)^{2}$.
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
13. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{n!}{n^{3}}(x-2)^{n}
$$

Hint: do the same kind of calculation as done in the hint for the previous problem.
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
14. Consider the point, in polar coordinates,

$$
P=(r, \theta)=\left(2, \frac{\pi}{6}\right) .
$$

In cartesian coordinates, the point P is given by

$$
P=(x, y)=(
$$, \qquad).

Below graph, and CLEARLY label, the following points.

$$
\begin{aligned}
P & =\left(2, \frac{\pi}{6}\right) \\
Q & =\left(-2, \frac{\pi}{6}\right) \\
R & =\left(2,-\frac{\pi}{6}\right) \\
S & =\left(-2,-\frac{\pi}{6}\right) .
\end{aligned}
$$

15. Consider the curve in polar coordinate

$$
r=3 \sin (2 \theta)
$$

15a.The period of $r=3 \sin (2 \theta)$ is \qquad _.

15b $\frac{\text { the period of } r=3 \sin (2 \theta)}{4}=$ \qquad

15c.Make a chart, as we did in class, to help you graph $r=3 \sin (2 \theta)$.

15dGraph $r=3 \sin (2 \theta)$.
16. Express the area enclosed by $r=3 \sin (2 \theta)$ as an integral with respect to θ (ok ... with respect to θ means a $d \theta$ in there).
(You do not have to evaluate this integral.)

```
area =
```


[^0]: absolutely convergent
 $\sum_{n=17}^{\infty}(-1)^{n} \frac{1}{\sqrt{n^{2}-1}} \quad \square$ conditionally convergent
 \square divergent

