Prof. Girardi	Math 142	Spring 2006	04.18 .06	Exam 3

MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{o}$	15	
2	12	
3	12	
4	12	
5	12	
6	12	
7	12	
8	13	
$\%$	100	

NAME:

\qquad

please check the box of your section

\square Section 001 (MW 9:05 am)
or
\square Section 002 (MW 10:10 am)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.): the whole of Chapter 10: Sections 10.1-10.10.

Problem Inspiration:

1. From class handouts. You were warned.
2. homework problem § 10.1 \# 15 and Mo's Friday homework \# 2
3. Serious Series Problems \# 4
4. Mo's Friday homework \# 2
5. homework problem § $10.8 \# 35$
6. Example from class.
7. Mo's Friday homework \# 2
8. homework problem § 10.9 \# 3
9. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!
1a. Sequences Let $-\infty<r<\infty$. (Fill-in-the blanks with exists or does not exist, i.e. DNE)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $|r|>1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
1b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$
- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
1c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
1d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function.

Then $\sum a_{n}$ converges if and only if \qquad converges.
1e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad then $\sum a_{n}$ \qquad .
1f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad then $\sum a_{n}$ converges if and only if \qquad .
1g. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.
- If $\rho \ldots$ then $\sum a_{n}$ converges.
- If $\rho \quad$ then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.
1h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If
- $a_{n} \quad a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$
1i. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
$\mathbf{1 j}$. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad

1k. Consider a function $y=f(x)$ where $f:[1, \infty) \rightarrow \mathbb{R}$.
Next consider the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n} \stackrel{\text { def. }}{=} f(n)$.

- If the limit of the function $y=f(x)$ as $x \rightarrow \infty$ is L,
then the limit of the corresponding sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ as $n \rightarrow \infty$ is \qquad .
- If $\lim _{n \rightarrow \infty} a_{n}=L$, is it necessarily true that $\lim _{x \rightarrow \infty} f(x)=L$? Circle: Yes or No

$$
\text { for } \mathbf{1 1}-\mathbf{1 o}
$$

Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=p_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=p_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
11. In open form (i.e., with \ldots and without a \sum-sign)
$p_{N}(x)=$

1m.In closed form (i.e., with a \sum-sign and without ...)
$p_{N}(x)=$

1n. In closed form (i.e., with a \sum-sign and without ...)
\square

$$
p_{\infty}(x)=
$$

1o. We know that $f(x)=p_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$,

2. For the following SEQUENCES:

- if the limit exists, find it
- if the limit does not exist, then say that it DNE.

Put your ANSWER IN the box and show your WORK BELOW the box.
2a.

```
\mp@subsup{\operatorname{lim}}{n->\infty}{}}\frac{(3n+1)(5n+2)}{17\mp@subsup{n}{}{2}}
```

2b.

$$
\lim _{n \rightarrow \infty}(-1)^{n} \frac{(3 n+1)(5 n+2)}{17 n^{2}}=
$$

2c.
$\lim _{n \rightarrow \infty}(1.00000017)^{n}=$
3. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n^{8}+1}} & \begin{array}{l}
\text { absolutely convergent } \\
\end{array} & \begin{array}{l}
\text { conditionally convergent } \\
\\
\\
\\
\\
\\
\\
\end{array} \begin{array}{l}
\square \text { ivergent }
\end{array}
\end{array}
$$

4. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
\sum_{n=8}^{\infty}(-1)^{n} \frac{1}{(\ln n)^{3}} & \square & \text { absolutely convergent } \\
& \begin{array}{l}
\text { conditionally convergent } \\
\\
\end{array} & \begin{array}{l}
\text { divergent }
\end{array}
\end{array}
$$

Hint: For any $0<q<\infty$, if n is big enough then $\ln n<n^{q}$ and so $\frac{1}{\left(n^{q}\right)^{3}}<\frac{1}{(\ln n)^{3}}$. Hint: the integral test is NOT helpful.
5. Consider the formal power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

Hint: $\left|\frac{x^{2(n+1)+1}}{(2(n+1)+1)!} \frac{(2 n+1)!}{x^{2 n+1}}\right|=\frac{|x|^{2 n+3}}{|x|^{2 n+1}} \frac{(2 n+1)!}{(2 n+3)!}=\frac{|x|^{2}}{1} \frac{(2 n+1)!}{(2 n+1)!(2 n+2)(2 n+3)}$.
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
6. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(3 x-6)^{n}}{n}
$$

Hint: $(3 x-6)^{n}=[3(x-2)]^{n}=3^{n}(x-2)^{n}$.
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
7. Using the fact that

$$
\begin{equation*}
\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n} \quad \text { when } \quad|r|<1, \tag{*}
\end{equation*}
$$

find a power series expansion of

$$
\frac{x}{2+32 x^{4}}
$$

and state when it is valid. Simplify your answer so that your power series has the form $\sum_{n=0}^{\infty} c_{n} x^{\text {some power }}$ for some constants c_{n}.

$$
\frac{x}{2+32 x^{4}}=\sum_{n=0}^{\infty} \quad \text { when }|x|<
$$

Hint: $32=2(16)$ and $16=2^{4}$.
8. In this problem, you may NOT use a known Taylor series; instead, you must compute requested items by hand. Let

$$
f(x)=e^{-x} \quad \text { and } \quad x_{0}=17
$$

We will follow the notation from this exam on PAGE 3 problems 11-10, so here

- $y=p_{\infty}(x)$ is the Taylor series of $y=e^{-x}$ about $x_{0}=17$
- $y=p_{N}(x)$ is the $N^{\text {th }}$-order Taylor polynomial of $y=e^{-x}$ about $x_{0}=17$
- $y=R_{N}(x)$ is the $N^{\text {th }}$-order Taylor remainder of $y=e^{-x}$ about $x_{0}=17$.

You may use, without showing, that

$$
f^{(n)}(x)=(-1)^{n} e^{-x}
$$

for $n=0,1,2,3,4, \ldots$.
8a. In closed form (i.e., with a \sum-sign and without ...)
$p_{\infty}(x)=$

Your answer should NOT have the symbol $f^{(n)}$ in it.
8b. We know that $f(16)=p_{N}(16)+R_{N}(16)$. Taylor's BIG Theorem tells us that, for $x=16$,

Your answer should have a N and a c in it but it should NOT have a x nor x_{0} in it.
8c. Find an upper bound for $\left|R_{N}(16)\right|$.
$\left|R_{N}(16)\right| \leq$

Your answer should have an N in it but should NOT have a c nor x nor x_{0} in it.

8d. Show that $f(16)=p_{\infty}(16)$.

